燃烧法制备纳米CeO2粒子工艺设计毕业论文.doc
《燃烧法制备纳米CeO2粒子工艺设计毕业论文.doc》由会员分享,可在线阅读,更多相关《燃烧法制备纳米CeO2粒子工艺设计毕业论文.doc(33页珍藏版)》请在三一办公上搜索。
1、目 录1 前言11.1 本课题的现状11.1.1 纳米材料的性质21.1.2 纳米材料的制备41.1.3 纳米材料的应用61.2二氧化铈71.2.1 二氧化铈的应用81.2.2 二氧化铈的制备111.2.3 纳米CeO2的发展前景131.3本课题所要研究的问题142 实验152.1 实验试剂152.2 仪器与设备152.3 实验步骤162.2.1 凝胶溶液的配置162.3.2 加热172.3.3 制备干凝胶172.3.4 燃烧172.3.5 后处理172.4 燃烧反应的绝热温度和相关热力学参数172.5 实验方案192.5.1 丙三醇作还原剂202.5.2 三异丙醇胺做还原剂212.5.3 三
2、乙醇胺做还原剂223 结果与讨论233.1 二氧化铈的影响因素233.1.1 还原剂结构的影响233.1.2反应温度的影响233.1.3凝胶烘干温度的影响243.1.4 pH的影响253.2 二氧化铈表征分析263.2.1 X-射线衍射分析(XRD)263.2.2 扫描电镜(SEM)274 结论27参考文献29致 谢311 前言1.1 本课题的现状纳米材料是二十一世纪的一种全新的材料,纳米材料指由纳米单元构成的任何类型的材料,如金属、陶瓷、聚合物、半导体、玻璃和复合材料等。20世纪60年代,诺贝尔奖获得者量子物理学家费曼曾经说:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到
3、大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。1981年德国萨尔兰大学的学者格莱特首次提出了纳米材料的概念。1982年IBM公司苏黎世研究所的两位科学家宾尼格和洛勒发明了扫描隧道显微镜(STM),这是一种基于量子隧道效应原理的新型高分辨率显微镜。它能以原子级的空间尺度来观察宏观块体物质表面上的原子和分子的几何分布和状态分布,确定物体局部区域的光、电、磁、热和机械特性。到20世纪80年代末,STM已发展成为一个可排布原子的工具。1990年,人们首次用STM进行了原子、分子水平的操作。1990年7月,在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料
4、科学为材料科学的一个新分支,而采用纳米材料制作新产品的工艺技术则被称为纳米技术。现在,纳米技术已经形成为高度交叉的综合性科学技术,是一个融科学前沿和高技术于一体的完整科学技术体系1。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”2。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。2012年1月,中国工业和信息化部发布的新材料产业“
5、十二五”发展规划中将纳米材料列入前沿新材料领域,并明确指出,中国将加强纳米技术研究,重点突破纳米材料及制品的制备与应用关键技术,积极开发纳米粉体、纳米碳管、富勒烯、石墨烯等材料,积极推进纳米材料在新能源、节能减排、环境治理、绿色印刷、功能涂层、电子信息和生物医用等领域的研究应用3。1.1.1 纳米材料的性质纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。纳米粉末又称为超微粉或超细粉,一般指粒度在100 nm以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。纳米纤维指直径为纳米尺度而长度
6、较大的线状材料。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料4。大量理论及实验研究表明,颗粒小于一定的尺寸时,能表现出其他常规材料更优异或不具备的性能。尤其是纳米粒子特殊的结构及效应使其具有特殊的性质,由此,在光、电、磁、催化、敏感等方面呈现出常规材料不具备的奇异性能,在许多科学领域展现了广阔的应用前景。(1)力学性质纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈
7、的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高5,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。(2)磁学性质当代计算机硬盘系统的磁记录密度超过1.55 Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音6。目前巨磁电阻
8、效应的读出磁头可将磁盘的记录密度提高到1.71 Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料,在光磁系统、光磁材料中有着广泛的应用。(3)电学性质由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。(4)热学性质纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结
9、果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。(5)光学性质纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子尺寸效应,纳米半导体微粒的吸收光谱一般存在蓝移现象,其光吸收率很大,所以可应用于红外线感测器材料7。纳米材料还具有特殊的效应:表面效应、体积效应、量子尺寸效应和宏观量子隧道效应。(1)表面效应同大块材料相比,纳米材料由于粒径小,粒子表面上的原子数的比例增加,比表面积和比表面能也迅速增大。由于材料外部原子和内部原子所处的环境不同,外部原子由于所处环境较为孤立,易出现配位不足,形成
10、许多悬空键。因而具有很高的比表面能,易与其他原子或分子结合从而发生反应,化学性质非常活泼。(2)体积效应体积效应也叫小尺寸效应,是指纳米晶粒的尺寸与传导电子的德布罗意波长及超导带态的相干长度或透射深度等物理特征尺寸相当或更小时,周期性的边界条件将被破坏,从而产生一系列新奇的性质。光吸收热阻、超导电性、介电性能、磁性、化学活性、催化性及熔点等方面较普通粒子有很大变化。(3)量子尺寸效应在宏观尺寸下或高温下,金属费米能级附近电子能级一般是连续的,低温情况下,电子的能级是离散的。所谓量子尺寸效是指当粒子尺寸下降到某一数值如接近电子波长时,费米能级附近的电子能级由准连续状态变为离散能级。由此,能级的禁
11、带宽度增加,导带更负,价带更正,使得光生电子的还原能力增强。能级间距发生分裂还能导致材料的光、电、磁性能的显著不同。(4)隧道效应隧道效应是指微观粒子具有贯穿势垒的能力。经研究发现,一些宏观量也具有隧道效应,如量子相干器中的磁通量以及电荷,微颗粒的磁化强度等,他们能够穿过宏观系统的势垒而产生变化,所以称为宏观量子隧道效应8。1.1.2 纳米材料的制备纳米材料的制备在当前纳米材料科学的研究中占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。按制备原料状态分为:气相法、液相法和固相法。(1)气相法9,10气相法指直接利用气体或者通过各种手段将物质变为气体,使
12、之在气体状态下发生物理或化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法。气体蒸发法制备的纳米微粒主要具有如下特点:表面清洁;粒度整齐,粒径分布窄;粒度容易控制;颗粒分散性好。气相法通过控制可以制备出液相法难以制得的金属、碳化物、氮化物、硼化物等非氧化物超微粉。气相法包括溅射法、气体蒸发法、化学气相反应法、化学气相凝聚法等,其中应用较多的是化学气相反应法和气体蒸发法11。溅射法是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等。气
13、体蒸发法是指在惰性气体或活泼性气体中将金属合金或陶瓷蒸发汽化然后与惰性气体冲突冷却凝结或与活泼性气体反应后再冷却凝结而形成纳米微粒。化学气相反应法,又称化学气相沉积法简称CVD,是利用金属化合物的蒸汽通过化学反应生成所需要的化合物在保护气体环境下快速冷凝从而制备各类物质的纳米微粒。化学气相凝聚法简称CVC法,是利用气态原料在气相中通过化学反应形成基本粒子并进行冷凝合成纳米微粒。 (2)液相法液相法制备纳米微粒是将均相溶液通过各种途径使溶质和溶剂分离,溶质形成一定形状和大小的颗粒,得到所需粉末的前驱体,热解后得到纳米微粒。液相法具有设备简单。原料容易获得、纯度高、均匀性好、化学组成控制准确等优点
14、,主要用于氧化物系超微粉的制备。包括沉淀法,喷雾热解法,乳液法,溶胶-凝胶法,其中应用最广的是溶胶 凝胶法、沉淀法11。沉淀法是指包括一种或多种离子的可溶性盐溶液,当加入沉淀剂于一定温度下使溶液发生水解,形成不溶性的氢氧化物、水合氧化物或盐类从溶液中析出,将溶剂和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化物粉料。沉淀法包括共沉淀法、直接沉淀法、均相沉淀法等。采用该法时,沉淀剂的过滤、洗涤剂溶液的pH值、浓度、水解速度、干燥方式、热处理等均影响微粒的大小特点是操作简单,但易引入杂质,难以制备粒径小的纳米微粒。喷雾热解法是将含所需正离子的某种盐类的溶液喷成雾状,送入加热至设定温度的反应器
15、内,通过反应生成微细的粉末颗粒。乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相,这样可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内,从而可形成球形颗粒,又避免了颗粒之间进一步团聚。微乳液法具有实验装置简单,能耗低,操作容易;所得纳米粒子粒径分布窄,且单分散性、界面性和稳定性好;与其它方法相比具有粒径易于控制,适应面广等优点。溶胶-凝胶法是指前驱物质(水溶性盐或油溶性醇盐)溶于水或有机溶剂中形成均质溶液,溶质发生水解反应生成纳米级的粒子并形成溶胶,溶胶经蒸发干燥转变为凝胶。该法具有在低温下制备纯度高,粒径分布均匀,能制得化学活性大,单组分或多组
16、分分级混合物的优点。(3)固相法固相法是通过固相到固相的变化来制备粉体,基础的固相法是金属或金属氧化物按一定的比例充分混合,研磨后进行煅烧,通过发生固相反应直接制得超微粉,或者是再次粉碎得到超微粉。在该法的尺寸降低过程中,物质无变化:机械粉碎(用球磨机,喷射磨等进行粉碎),化学处理(溶出法等)。固相法包括热分解法,固相反应法,高能球磨法。固相反应不使用溶剂,具有高选择性、高产率、低能耗、工艺过程简单等特点。热分解法包括喷雾干燥、焙烧和燃烧等方法,用于盐溶液快速蒸发、升华、冷凝和脱水过程,避免了分凝作用,能得到均匀的盐类粉末如将一定配比的金属盐溶液用离子喷雾器在干燥室内与不同浓度的气流接触,快速
17、蒸发分解该盐溶液,得到纳米微粒。高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒12。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。1.1.3 纳米材料的应用(1)在催化上的作用纳米催化剂作为新一代高效环保催化剂,在光催化空气净化、汽车尾气净化、化石燃料脱硫和降低温室效应等空气净化领域有很好的应用。殷蓉等13发现TiO2光催化剂对甲醛降解实验有很好的催化活性,重复使用10次左右,该催化剂的活性无明显下降。赵玉翠等14发现以合适的制备工艺条件将TiO2制成多孔结构是提高其光催化活性的有效途径之一。(2)
18、在陶瓷工业上的应用纳米陶瓷(nanometer ceramics)是指晶粒尺寸在100 nm以下的多晶陶瓷。广义地讲,纳米陶瓷材料包括:纳米陶瓷粉体,单相和复相的纳米陶瓷,纳米-微米复相陶瓷和纳米陶瓷薄膜15。纳米陶瓷复合材料具有良好的力学性能和优越的高温性能等,是当今材料科学研究的重要课题。(3)在汽车工业中的应用利用纳米材料特殊的抗紫外线、抗老化、强度高、韧性好、静电屏蔽效应良好及抗菌消臭功能强,开发和制备新的汽车涂料、纳米复合材料车体、纳米动机和纳米汽车润滑剂与尾气净化剂等具有广泛的应用和开发前景。自上世纪90年代以来,纳米科学得到迅速的发展,纳米技术也层出不穷,并开始涉及汽车尾气净化行
19、业。采用纳米技术制造的汽车尾气催化器能够提高催化效率,减少贵金属消耗,降低生产成本。张敬超等16指出在CO催化氧化中纳米催化剂的催化活性和选择性大大优于常规催化剂,纳米复合稀土催化剂在汽车尾气控制方面前景诱人。(4)在生物医学上的应用纳米技术突飞猛进,作为纳米技术的重要领域的纳米生物工程、纳米医学、纳米生物技术和纳米生物材料也取得了辉煌的成就。新的化学和生物传感技术使生物研究获得巨大发展,生物学研究技术的最新成就之一就是纳米传感器的开发。同时,随着纳米科技与现代医学和生物学的交叉与渗透,纳米生物医学正在迅速形成一个崭新的研究领域。纳米结构材料及相关纳米技术在组织引导再生与修复、药物的靶向输送和
20、控制释放、纳米尺度物质的生物学效应和安全性评价等方面已经取得了一系列进展17。总之,纳米材料从根本上改变了材料的结构,可望得到诸如高强度金属和合金、可塑性陶瓷金属间化合物以及性能各异的原子规律复合材料等新一代材料,为克服材料科学研究领域中长期存在的问题开辟了新的途经。纳米材料科学是一门新兴的并正迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”。纳米无机氧化物是纳米材料的重要组成部分,而稀土氧化物又是一个亮点,其中纳米二氧化铈的制备具有极其重要的现实意义。1.2 二氧化铈铈是人类的应用中最早应用的稀土元
21、素,它是火石的主要成分,而人类应用火石己有数千年的历史。20世纪60年代初期,我国金属铈的生产走向了工业化,70年代铈的生产技术更加的成熟了。80年代初,金属铈的生产技术有了重大突破,采用了氧化铈熔盐电解法来制备铈产品,该技术的电流效率和金属回收率比较高,生产作业条件和环保状况相对较好。因此,氧化铈电解法逐步代替了氯化铈电解法,金属铈的规范化生产跃上了新的台阶。90年代以来,我国金属铈及其稀土混合金属的生产发展更加迅速。铈产品除在国内大量传统应用外,在高科技技术上的使用(如永磁材料及贮氢材料等的应用)也有更新的进展,出口量激增。因此,我国已成为世界铈及其稀土混合金属的生产大国、应用大国和出口大
22、国,并均居全球首位,估计今后仍将维持着这种发展态势18。金属铈拥有独特的物理和化学性质,在钢铁、有色金属及合金、发火合金、永磁材料和贮氢材料等工业领域中有广泛的应用,它的发展前景较好。铈的熔点为799 ,沸点为3426 ,密度为8.240 g/cm3()(25 ),为灰色活泼的金属,是镧系金属中自然丰度最高的一种。在空气中失去光泽,加热时燃烧,与热水迅速反应,溶于酸。用于制造打火石、陶瓷和合金等。大多数铈盐及其溶液为橙红色到橙黄色,具有反磁性和强氧化性。二氧化铈用于抛光精密玻璃制品,也可做玻璃去色剂和用于生产有色玻璃,硝酸铈用于制造白炽灯罩。我国具有十分丰富的铈资源。据报道,我国铈的工业储量约
23、为1600万吨(以铈计),为今后大力发展铈品工业创造了优良的基础条件。1.2.1 二氧化铈的应用二氧化铈(CeO2)熔点超过2600,是铈的相当稳定的氧化物,它属于立方晶系,晶体结构为萤石型(如图1.2.1a所示),其中Ce的配位数为8,氧的配位数为4。即使在缺氧的情况下形成大量的氧空位,仍然能保持萤石型晶体结构。图1.2.1a CeO2的晶格结构二氧化铈有强氧化性,为白色或黄白色固体,难溶于水。二氧化铈是一种廉价、用途极广的轻稀上氧化物19,己被用于发光材料、抛光剂、紫外吸收剂、汽车尾气净化催化剂、玻璃的化学脱色剂、耐辐射玻璃、电子陶瓷等。二氧化铈的物理化学性质可能直接影响材料的性能,如:超
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 燃烧 法制 纳米 CeO2 粒子 工艺 设计 毕业论文

链接地址:https://www.31ppt.com/p-4016480.html