毕业设计(论文)基于FPGA的DDS信号发生器设计.doc
《毕业设计(论文)基于FPGA的DDS信号发生器设计.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于FPGA的DDS信号发生器设计.doc(38页珍藏版)》请在三一办公上搜索。
1、第1章 绪论1.1 系统背景随着科技的不断发展,电子技术获得了飞速的发展,有力的推动了生产力的发展和社会信息化程度的提高,电子行业也经历着日新月异的变化。90年代后期,出现了以高级语言描述、系统级仿真和综合技术为特征的第三代EDA工具,极大地提高了系统设计的效率,使广大的电子设计师开始实现“概念驱动工程”的梦想。设计师们摆脱了大量的具体设计工作,而把精力集中于创造性的方案与概念构思上,从而极大地提高了设计效率,缩短了产品的研制周期。现场可编程逻辑门阵列FPGA,与PAL、GAL器件相比,他的优点是可以实时地对外加或内置得RAM或EPROM编程,实施地改变迄今功能,实现现场可编程(基于EPROM
2、型)或在线重配置(基于RAM型)。是科学试验、演技研制、小批量产品生产的最佳选择其间。自上世纪70年代单片机问世以来,它以其体积小、控制功能齐全、价格低廉等特点赢得了广泛的好评与应用。由单片机构成的应用系统有有体积小、功耗低控制功能强的特点,它用利于产品的小型化、多功能化和智能化,还有助与提高仪表的精度和准确度,简化结构、减小体积与重量,便于携带与使用,降低成本,增强抗干扰能力,便于增加显示、报警和诊断功能。因而许多现代仪器仪表都用到了单片机。1.2 选题目的及其意义 信号发生器它最原始的功能是能够产生多种波形,比如说它可以产生方波、三角波、正弦波、锯齿波等等。但随着科技的发展,它的功能也得到
3、了增强,成为最普通、最基本的,也是应用最广泛的电子仪器之一,几乎所有的电参量的测量都需要用到多功能信号发生器。不论是在生产还是在科研与教学上,多功能信号源发生器都是电子工程师信号仿真实验的最佳工具。它除此之外还有许多的用途,它已经被广泛地应用于工业、教学、医学,科学研究等领域。目前大部分信号发生器的设计是以微控制器为核心进行的,它与纯硬件设计的信号发生器相比,具有高精度、高可靠性、操作方便、价格便宜、智能化等特点,是智能化仪器的一个发展方向,具有一定的实用价值。那么,对于我们来说,信号发生器的设计是让我们掌握并巩固所学的知识,提高自己动手能力的一个重要的途径。通过对它的设计,我们的能力可以得到
4、很大的提高,这样就很利于我们今后自身的发展。1.3 系统概述本次毕业设计我所设计的是多功能信号发生器,它能够产生方波,三角波和正弦波三种基本波形。其电路采用FPGA 器件相结合的方法,充分利用和FPGA 器件的快速性、外设的替代性,采用数字技术,通过对三种波形输出进行控制,包括幅度控制和频率控制电压的控制,通过DAC0832转换输出、并将频率与幅度的大小送LCD显示等功能。同时对三种波形进行编辑。对键盘进行扫描判断,进入相应的功能程序。在各功能程序中,执行相应内容,将控制字送到DAC0832进行转换,从而对模拟波形的幅度进行控制,再经过放大输出。同时可以根据需要方便地实现各种比较复杂的调频、调
5、相和调幅功能,具有良好的实用性。第2章 设计方案论证2.1 总体方案论证与比较方案一: 采用模拟锁相环实现模拟锁相环技术是一项比较成熟的技术。应用模拟锁相环,可将基准频率倍频,或分频得到所需的频率,且调节精度可以做到相当高、稳定性也比较好。但模拟锁相环模拟电路复杂,不易调节,成本较高,并且频率调节不便且调节范围小,输出波形的毛刺较多,得不到满意的效果。方案二:采用直接数字频率合成,用单片机作为核心控制部件,能达到较高的要求,实现各种波形输出,但受限于运算位数和运算速度,产生的波形往往达不到满意效果,并且频率可调范围小,很难得到较高频率,并且单片机的引脚少,存储容量少,这就导致了外围电路复杂。方
6、案三:采用直接数字频率合成,用FPGA器件作为核心控制部件,精度高稳定性好,得到波形平滑,特别是由于FPGA的高速度,能实现较高频率的波形。控制上更方便,可得到较宽频率范围的波形输出,步进小,外围电路简单易实现。 因此采用方案三。2.2 DDS模块方案论证方案一: 采用高性能DDS 单片电路的解决方案随着微电子技术的飞速发展,目前高超性能优良的DDS 产品不断推出,主要有Qualcomm 、AD、Sciteg 和Stanford 等公司单片电路(monolithic)。Qualcomm 公司推出了DDS 系列Q2220 、Q2230 、Q2334 、Q2240 、Q2368 ,其中Q2368
7、的时钟频率为130MHz, 分辨率为0.03Hz,变频时间为0.1s;美国AD 公司也相继推出了他们的DDS 系列:AD9850 、AD9851 、可以实现线性调频的AD9852 、两路正交输出的AD9854 以及以DDS 为核心的QPSK 调制器AD9853 、数字上变频器AD9856 和AD9857 。AD 公司的DDS 系列产品以其较高的性能价格比,目前取得了极为广泛的应用。方案二: 采用低频正弦波DDS 单片电路的解决方案1此方案的典型电路有Micro Linear 公司的电源管理事业部推出低频正弦波DDS 单片电路ML2035 以其价格低廉、使用简单得到广泛应用。ML2035 特性:
8、(1)输出频率为直流到25kHz ,在时钟输入为12.352MHz 以外频率分辨率可达到1.5Hz(-0.75+0.75Hz),输出正弦波信号的峰-峰值为Vcc;(2)高度集成化,无需或仅需极少的外接元件支持,自带3 12MHz 晶体振荡电路;(3)兼容的3 线SPI 串行输入口,带双缓冲,能方便地配合单片机使用;(4)增益误差和总谐波失真很低。ML2035 生成的频率较低(025kHz),一般应用于一些需产生的频率为工频和音频的场合。如用2 片ML2035 产生多频互控信号,并与AMS3104 (多频接收芯片)或ML2031/2032 (音频检波器)配合,制作通信系统中的收发电路等。可编程正
9、弦波发生器芯片ML2035 设计巧妙,具有可编程、使用方便、价格低廉等优点,应用范围广泛。很适合需要低成本、高可靠性的低频正弦波信号的场合。方案三: 自行设计的基于CPLD/FPGA 芯片的解决方案DDS 技术的实现依赖于高速、高性能的数字器件。可编程逻辑器件以其速度高、规模大、在线可编程,以及有强大EDA 软件支持等特性,十分适合实现DDS 技术。目前PLD 器件(包括CPLD、FPGA )的生产厂商主要有Altera,Xilinx图2.1 DDS工作框图以及Lattoce 等。Altera 是著名的PLD 生产厂商,多年来一直占据着行业领先的地位。Altera 的PLD 具有高性能、高集成
10、度和高性价比的优点,此外它还提供了功能全面的开发工具和丰富的IP 核、宏功能外它还提供了功能全面的开发工具和丰富的IP 核、宏功能库等,因此Altera 的产品获得了广泛的应用。虽然有的专用DDS 芯片的功能也比较多,但控制方式却是固定的,因此不一定是我们所需要的。而利用FPGA 则可以根据需要方便地实现各种比较复杂的调频、调相和调幅功能,具有良好的实用性。就合成信号质量而言,专用DDS 芯片由于采用特定的集成工艺,内部数字信号抖动很小,可以输出高质量的模拟信号;利用FPGA 也能输出较高质量的信号,虽然达不到专用DDS 芯片的水平,但信号精度误差在允许范围之内。基于以上优点我们采用了FPGA
11、芯片来实现我们设计的DDS.2.3数据存储方案论证 方案一: 将波形数据存储在EPROM27C512中,并直接通过单片机软件扫描的方式将波形沼气传输给DAC0832产生波形输出。这种方法是硬件电路简单,用通用的单片机最小系统板和一般的D/A转换器就可以完成。由于在此方案中单片机要完成波形扫描功能,还要负责整个系统的管理任务,并且受单片机工作速度的限制,不能很好的完成题目的要求。 方案二:使用FPGA作为数据转换桥梁,将波形存储在其内部的RAM中,通过硬件扫描将波形数据传输给DAC0832产生波形输出。由于FPGA是一种高密可编程逻辑器件,可以满足题目的要求。 综合各种因素,选择方案二。2.4
12、键盘/显示方案论证本设计的频率字和相位字输入来实现,通过外部将数据输入到FPGA中,同时控制DAC0832的数据转换。键盘采用43矩阵式,共12个键分别对应09个数字键和一个启动键两个波形控制键。常用的显示方案有以下几种。方案一:使用液晶显示屏显示频率,幅度和相位以及波的形状。液晶显示屏(LCD)具有轻薄短小、低耗电量、无辐射危险,平面直角显示以及影像稳定不闪烁、可视面积大、画面效果好、分辨率高、抗干扰能力强等特点。方案二:使用传统的数码管显示。数码管是采用BCD编码显示数字,程序编译容易,资源占用较少,但是显示的字符较少,且不能显示汉字。根据以上的论述,采用方案一。2.5 数模转换方案论证现
13、阶段市场上用于数摸转换的芯片种类很多,常用的有8位,12位,16位等。他们各有其在不同的应用领域有着各自的优势。ADV7125是一种8位的高速,高精度的数模转换芯片其优主要性能如下:240MHz的最大样速度;三路8位D/A转换器SFDR; 当时钟频率为50MHZ;输出为1MHZ时,70dB; 当时钟频率为140MHZ;输出为40HMZ时,-53dB; 与RS-343A/RS-170接口输出兼容;DA转换器的输出电流范围为:2mA到26mA; TTL兼容输入; 单电源+5V/+3.3V工作;低功耗(3V时最小值为30)。其优点就不然而喻。DAC0832也是一种8位的数模转换芯片,单电源供电,+5
14、V到+15V正常工作。基准电压范围为V;电流建立时间为1;CMOS工艺,低功耗202。综上来看ADV7215是中性能比较优越的DAC芯片,但其价格较DAC0832要高,我们的设计中所需求的DAC芯片新能要求,DAC0832已经可以达到,而且DAC0832是我们用的较多的的一种DAC芯片,对于它的用法比较熟悉。因此我们选则DAC0832来作为我们的数模转换芯片。DAC0832是采用CMOS工艺制成的单片电流输出型8位数 / 模转换器,单电源供电,从+5V+15V均可正常工作。基准电压的范围为10V;电流建立时间是1S;COMS工艺,功耗20mW。图5.2是DAC0832的逻辑框图及引脚排列。器件
15、的核心部分采用倒T型电阻网络的8位D / A转换器,如图2.2所示。它是由倒T型R2R电阻网络、模拟开关、运算放大器和参考电压VREF四部分组成。 图2.2 DAC0832芯片引脚图运放的输出电压为: (2.1) 由上式可见,输出电压VO 与输入的数字量成正比,这就实现了从数字量到模拟量的转换。一个8位的D / A转换器,它有8个输入端,每个输入端是8位二进制数的一位,有一个模拟输出端,输入可有28 256个不同的二进制组态,输出为256个电压之一,即输出电压不是整个电压范围内任意值,而只能是256个可能值。DAC0832的引脚功能说明如下: D0D7 :数字信号输入端 ILE:输入寄存器允许
16、,高电平有效: 片选信号,低电平有效:写信号1,低电平有效 :传送控制信号,低电平有效:写信号2,低电平有效IOUT1,IOUT2:DAC电流输出端 RfB :反馈电阻,是集成在片内的外接运放的反馈电阻VREF :基准电压(10+10)V VCC :电源电压(515)VAGND:模拟地NGND:数字地2.6 滤波方案论证方案一:采用二阶巴特沃兹低通滤波器。巴特沃兹滤波器的幅度函数是单调下降的,由于n 阶低通巴特沃斯滤波器的前(2n-1)阶导数在=0处为零,所以巴特沃斯滤波器也称为最大平坦幅度滤波器,该方案滤波性能较好,但构造和参数设置比较复杂。 方案二:采用RC低通滤波器。能很好的滤除高频信号
17、,由于不须运算发大器,参数计算容易,对系统要求不高。基于上述理论分析,拟订方案一。2.7 总体设计方框图本系统分为五大部分:FPGA主控电路,液晶显示,键盘控制,数模转换,低通滤波电路。框图如图2.3所示: 图2.3系统总设计流程图第3章 工作原理本设计以FPGA为核心,由外部来实现频率、相位的预置和步进,并完成信号的频率和相位差显示。如图3.1系统框图。采用直接频率合成(DDS)技术,用FPGA来产生一路信号波行。将量化的波形数据存到存储器中,在经地址计数器寻址读出波形数据,控制地址计数器的时钟频率即可控制采样点数,这样就控图3.1 工作原理框图制了输出波形的频率。由于这些数据为数字量,故再
18、经D/A转换电路将其转换为模拟量,通过低通滤波器滤除阶梯即可输出满足要求的波形。由于本设计采用直接数字频率合成技术(DDS),运用一片EPROM,存储波形数据,分别由设定数据差值的地址数据寻址即可输出有设定波形,有效地扩展了输出波形的频率范围并实现了输出高精度相位的波行信号,系统稳定可靠。3.1 FPGA设计图3.2 DDS的原理框图本设计采用Altera公司的EPF10K10LC-84器件,利用其集成化数字系统EDA设计软件MAX-PLUSE2进行开发。开发语言用VHDL。设计一相位累加器,同时输出两路寻址信号(基准信号的寻址信号以及输出信号的寻址信号),对ROM表进行寻址输出波形。设计框图
19、如上图3.2: 直接数字频率合成器,(Direct Digital Synthesizer)是从相位概念出发直接合成所需波形的一种频率合成技术。一个直接数字频率合成器由相位累加器、加法器、波形存储ROM、D/A转换器构成。其中K为频率控制字、P为相位控制字、W为波形控制字、为参考时钟频率,N为相位累加器的字长,D为ROM的数据位及D/A转换器的字长。相位累加器在时钟的控制下以步长K作累加,输出的N位二进制码与相位控制字P、波形控制字W相加后作为波形ROM的地址,对波形ROM进行寻址,波形ROM输出D位的幅度码S(n)经D/A转换器变成阶梯波S(t),再经过低通滤波器平滑后就可以得到合成的信号波
20、形。全盛的信号波形取决于波形ROM中存放的幅度码,因此用DDS可以产生任意波形3。 (1)频率预置与调节电路。K被称为频率控制字,也叫相位增量。DDS方程为: (3.1)为输出频率,为时钟频率。当K=1时,DDS输出最低频率(也即频率分辨率)为/2N,而DDS的最输出频率由Nyquist采样定理决定,即/2,也就是说K 的最大值为2N-1。因此,只要N足够大,DDS可以得到很细的频率间隔。要改变DDS的输出频率,只要改变频率控制字K即可。 (2)累加器 相位累加器由N位加法器与N位寄存器级联构成。每来一个时钟脉冲,加法器将频率控制字K与寄存器输出的累加相位数据相加,再把相加后的结果送至寄存器的
21、数据输入端。寄存器将加法器在上一个时钟作用后所产生的相位数据反馈到加法器的输入端;以使加法器在下一个时钟作用下继续与频率控制字进行相加。这样,相位累加器在时钟的作用下,进行相位累加。当相位累加器累加满量时就会产生一次溢出,完成一个周期性的动作。 (3)控制相位的加法器 通过改变相位控制字P可以控制输出信号的相位参数。令相位加法器的字长为N,当相位控制字由0跃变到P(P0)时,波形存储器的输入为相位累加器的输出与相位控制字P之和,因而其输出技术的幅度编码相位会增加P/2N,从而使最输出技术的信号产生相称。 (4)控制波形的加法器 通过改变小型控制字W可以控制输出信号的波形。由于波形存储器中的不同
22、波形是分块存储的,所以当小型控制字改变时,波形存储器的输入为改变相位后的地址与波形控制字W(波形地址)之和,从而使最后输出技术的信号产生相移。 (5)波形存储器 用相位累加器输出的数据作为波形存储器的取样地址,进行波形的相位幅值转换,即可在给定的时间上确定输出的波形的抽样幅值。N位的寻址ROM相当于把0O360O的正弦信号离散成具有2N个样值的序列,若波形ROM有D位数据位,则2N个样值的幅值以D位二进制数固化在ROM中,按照地址的不同可心输出相应本相位的正弦信号的幅值。相位幅值变换原理图如下图3.3所示:图3.3 变换原理图 D/A转换器的作用是把合成的正弦波数字量转换成模拟量。正弦幅度量化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 基于 FPGA DDS 信号发生器 设计
链接地址:https://www.31ppt.com/p-4016359.html