小样本DW统计量的分布特征.doc
《小样本DW统计量的分布特征.doc》由会员分享,可在线阅读,更多相关《小样本DW统计量的分布特征.doc(12页珍藏版)》请在三一办公上搜索。
1、小样本DW统计量的分布特征 小样本DW统计量的分布特征张晓峒1 赵初晓2(1. 南开大学国际经济研究所, 天津 300071)(2. 天津大学管理学院, 天津 300072)摘要:本文用模特卡罗模拟方法研究了样本容量在54以下的DW统计量的分布特征,并给出小样本DW检验临界值表。同时用DW检验提出了一个判别最小二乘估计中是否存在虚假回归的有效方法。关键词:模特卡罗模拟,DW分布,非平稳性,协整Distribution of Small Sample
2、 DW StatisticZhang Xiaotong1 Zhao Chuxiao2(1. Institute of International Economics, Nankai University, Tianjin 300071)(2. Management School, Tianjin University, Tianjin 300072)Abstract &nb
3、sp;In this paper we investigated the DW distribution with sample size under 54 by Monte Carlo simulation method and gave a critical table for small sample DW test.&n
4、bsp;Based on that we proposed a method for recognizing spurious regression in ordinary least squares estimation.Keywords: Monte Carlo simulation, DW distribution, nonstationary, cointegratio
5、n1概述 八十年代以来,Engle-Granger (1987), Engle-Yoo (1987) 和Sargan-Bhargava (1983)都曾提及用DW统计量检验非平稳变量间的协整性问题。在Sargan-Bhargava (1983)中还专门给出一个DW协整检验用表。但在这些论文中均未对小样本DW统计量的分布特征给与研究。本文采用蒙特卡罗模拟方法对小样本DW统计量的分布特征进行了充分、详细的研究。样本容量分别取为10,20,30,40和50。变量的设定分为三种情形:一. 
6、;所涉及的两个变量都取自I(1)过程;二. 所涉及的两个变量中一个取自I(1)过程,一个取自I(0)过程;三. 所涉及的两个变量都取自I(0)过程。在有些国家以年为单位的时间序列的最大可观测值个数并不是很大,所以对小样本DW统计量分布特征的研究有着非常重要的理论与现实意义。本文结构如下。第二节推导两个I(1)变量进行最小二乘回归后,由残差计算的DW统计量的极限分布表达式,第三节介绍蒙特卡罗模拟结果及其分析,第四节给出实例,第五节给出结论。2DW统计量的极限分布给定如下随机数据生成系统,yt = yt-1 + ut ,&nbs
7、p; y1 = 0,  
8、; (1)xt = xt-1 + vt , x1 = 0, &nbs
9、p; (2)其中ut, vt I(0), E(ut) = E(vt) = 0; E(ui uj) = 0, i ¹ j,” i, j。则yt和xt为相互独立的两个I(1)过程。 建立如下回归模型:yt&nb
10、sp;= b0 + b1xt + wt . &nb
11、sp; (3)当对上式进行最小二乘估计时,会产生虚假回归问题。用随机误差wt的最小二乘估计值 构造DW统计量, &
12、nbsp; (4)因为当T ® µ 时, 必然接近于零,上式中分子为Op(1),而分母T -1sw2也是Op(1),所以DW统计量是Op(T -1)的。当T ® µ 时,有
13、 DW Þ 0.即当用两个I(1)变量进行如模型(3)形式的回归时,DW统计量的极限分布为零。3小样本DW分布的蒙特卡罗模拟及其结果分析当样本为有限样本,特别是小样本时,DW统计量的分布与其极限分布有着很大不同。由于上述条件下的DW统计量的分布无法用解析的方法求解,本文用蒙特卡罗模拟方法对DW统计量的小样本分布特征进行了研究。以模型(3)为基础,除了以yt,xt I(1)为条件对DW分布(记为DW(1,1))进行模拟外,还分别以yt I(
14、1),xt I(0) 和yt,xt I(0)为条件进行了模拟(分别记为DW(1,0) 和DW(0,0))。由于DW(0,0)就是通常意义的DW统计量,所以只模拟样本容量T = 10, 40两种情形。对于DW(1,1)和DW(1,0),分别取T = 10, 20, 30, 40和50进行了模拟。在每个样本容量条件下各模拟1000次。所得结果见表一。首先见表一的第三部分,先分析DW(0,0) 的分布特征。由于DW(0,0) 就是通常意义
15、的DW统计量,所以模拟结果表明,一. DW(0,0)分布的均值为2,不受样本容量大小的影响;二.分布是对称的,相应JB值(表中最后一列)说明小样本DW(0,0)统计量的分布与正态分布相当近似。三. 随着样本容量的增大,分布的标准差逐步减小。见表一的第一、二部分。小样本DW(1,1)和DW(1,0)统计量有着相似的分布特征。一. 分布均为右偏态,分布左侧有端点,端点为零;二. 随着样本容量的增大,DW(1,1)和DW(1,0)分布的右偏倚程度越来越大,分布均值逐步相左移动,90、95、99百分位数也逐步向左移动,同时分布的标准差逐步减小,分布的峰值越来越大
16、,DW取值向零集中;三. 在样本容量相同的条件下,DW(1,0)分布总是位于DW(1,1)分布的左侧,即DW(1,0)分布的均值、百分位数以及方差都比DW(1,1)分布的相应量小。T = 50模拟1000次的DW(1,1)和DW(1,0)分布的结果分别见图一和图二。表一 DW分布的蒙特卡罗模拟结果类 型样本容量百 分位 数 均 值标准差偏 度JB统计量 1 90 95 99 100.22
17、2.182.452.81 1.28 0.620.50 48.74DW(1,1) 200.111.281.491.80 0.75 0.390.68 77.61 300.090.901.041.39 0.51 0.291.07 293.73 400.060.770.881.16 0.41 0.251.06 2
18、50.10 500.050.590.710.98 0.33 0.201.16 341.31 100.181.732.022.38 0.98 0.530.73 89.59 200.091.021.211.59 0.56 0.341.22 369.61DW(1,0) 300.060.700.831.18 0
19、.38 0.241.27 430.43 400.040.540.660.91 0.30 0.191.25 383.68 500.040.450.540.71 0.24 0.151.12 261.84DW(0,0) 101.312.752.973.24 2.02 0.570.00 7.17 40
20、0.722.412.532.70 2.00 0.310.03 4.06注:1. DW(1,1)表示由两个I(1)变量进行回归,计算得到的DW值。 2. DW(1,0)表示由一个I(1)变量和一个I(0)变量进行回归,计算得到的DW值。 3. DW(0,0)表示由两个I(0)变量进行回归,计算得到的DW值。 4. 在每个样本容量条件下各模拟1000次。图一
21、 T = 50模拟1000次的DW(1,1)分布直方图 图二 T = 50模拟1000次的DW(1,0)分布直方图在相同样本容量条件下,DW(1,0)分布之所以位于DW(1,1)分布左侧,可作如下解释。随着T ® µ,DW(1,0)和DW(1,1)的分布都趋近于零。由于DW(1,0)来自于一个I(1) 变量和一个I(0)变量之间的回归,所以残差序列wt I(1)。由于DW(1,1)来自于两个I(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小样 DW 统计 分布 特征
链接地址:https://www.31ppt.com/p-4016062.html