平方根和立方根知识点总结和练习.doc
《平方根和立方根知识点总结和练习.doc》由会员分享,可在线阅读,更多相关《平方根和立方根知识点总结和练习.doc(6页珍藏版)》请在三一办公上搜索。
1、【基础知识巩固】一、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根即:如果,那么x叫做a的平方根(2)开平方的定义:求一个数的平方根的运算,叫做开平方开平方运算的被开方数必须是非负数才有意义。(3)平方与开平方互为逆运算:3的平方等于9,9的平方根是3 (4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示(6) a是x的平方 x的平方是ax是a的平方根 a的平方根是x2、算术平方根(1)算术平
2、方根的定义: 一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根a的算术平方根记为,读作“根号a”,a叫做被开方数规定:0的算术平方根是0. 也就是,在等式 (x0)中,规定。(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。一般来说,被开放数扩大(或缩小)a倍,算术平方根扩大(或缩小)倍,例如=5,=50。(4)夹值法及估计一个(无理)数的大小(5) (x0) a是x的平方 x的平方是ax是a的算术平方根 a的算术平方根是x(6)
3、正数和零的算术平方根都只有一个,零的算术平方根是零。 (0) ;注意的双重非负性:-(0) 0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。3、立方根(1)立方根的定义:如果一个数x的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根(2)一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。(3) 一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立
4、方根。(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。(5) a是x的立方 x的立方是ax是a的立方根 a的立方根是x(6),这说明三次根号内的负号可以移到根号外面。【典型例题分析】知识点一:有关概念的识别1、下列说法中正确的是( )A、的平方根是3 B、1的立方根是1 C、=1 D、是5的平方根的相反数2、下列语句中,正确的是( )A一个实数的平方根有两个,它们互为相反数B负数没有立方根 C一个实数的立方根不是正数就是负数D立方根是这个数本身的数共有三个 3、下列说法中:都是2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平方根 立方根 知识点 总结 练习
链接地址:https://www.31ppt.com/p-4008133.html