小学奥数--植树问题(二)-精选练习例题-含答案解析(附知识点拨及考点).doc
《小学奥数--植树问题(二)-精选练习例题-含答案解析(附知识点拨及考点).doc》由会员分享,可在线阅读,更多相关《小学奥数--植树问题(二)-精选练习例题-含答案解析(附知识点拨及考点).doc(10页珍藏版)》请在三一办公上搜索。
1、5-1-3.植树问题(二)教学目标1封闭与非封闭植树路线的讲解及生活运用。2掌握空心方阵和实心方阵的变化规律3几何图形的设计与构造知识点拨一、植树问题分两种情况:(一)不封闭的植树路线. 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数段数全长株距全长株距(棵数)株距全长(棵数) 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长株距棵数;棵数段数全长株距;株距全长棵数. 如果植树路线的两端都不植树,则棵数就比中还少1棵. 全长、棵数、株距之间的关系就为:棵数段数全长株距.株距全长(
2、棵数).全长株距(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数段数周长株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数总数”;(3)每向里一层每边棋子数减少; (4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。例题精讲模块一、封闭图形的植树问题【例 1】 小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3
3、米栽种一棵树问:共需树苗多少株?【考点】封闭图形的植树问题 【难度】1星 【题型】解答【解析】 因为圆形池塘是一个封闭的模型,所以我们直接运用公式棵数段数周长株距,从而有树苗:15003500(株).【答案】株【巩固】 周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【考点】封闭图形的植树问题 【难度】1星 【题型】解答【解析】 (米),(棵)【答案】棵【例 2】 在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗 棵。【考点】封闭图形的植树问题 【难度】2星 【题型】填空【关键词
4、】希望杯,五年级,二试,第9题【解析】 先找出两边中点数120、172.5的最大公约数为7.5草坪周长为:(345+240)7.5=156(棵)【答案】棵【例 3】 公园内有一个圆形花坛,绕着它走一圈是120米如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?【考点】封闭图形的植树问题 【难度】2星 【题型】解答【解析】 在圆周上栽树时,由于开始栽的一棵与依次栽的最后一棵将会重合在一起,所以可栽的株数正好等于分成的段数由于每相邻的两株丁香花之间等距离地栽2株月季花,所以栽月季花的株
5、数等于2乘以段数的积要求两株相邻的丁香花之间的2株月季花相距多少米?需要懂得两株相邻的丁香花之间等距离地栽2株月季花,就是说这4株花之间有3段相等的距离.以6米为一段,圆形花坛一圈可分的段数,即是栽丁香花的株数:120620(株),栽月季花的株数是:22040(株),每段上丁香花和月季花的总株数是:224(株),4株花栽在6米的距离中,有3段相等的距离,每两株之间的距离是:6(4-1)2(米).【答案】丁香花的株数20株,月季花的株数40株,两株相邻的丁香花之间的2株月季花相距2米。【巩固】 一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多
6、少棵芍药?多少棵月季?两棵月季之间的株距是多少米?【考点】封闭图形的植树问题 【难度】2星 【题型】解答【解析】 在圆形花坛上栽花,是封闭路线问题,其株数=段数. 由于相邻的两棵芍药花之间等距的栽有两棵月季,则每6米之中共有3棵花,且月季花棵数是芍药的2倍.解:共可栽芍药花:(棵) 共种月季花:(棵)两种花共:(棵)两棵花之间距离:(米)相邻的花或者都是月季花或者一棵是月季花另一棵是芍药花,所以月季花的株距是2米或4米.【答案】芍药花棵,月季花棵,月季花的株距是2米或4米【巩固】 在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_面,黄旗
7、_面【考点】封闭图形的植树问题 【难度】2星 【题型】填空【解析】 (红旗),(黄旗) 【答案】红旗面,黄旗面【例 4】 大雪后的一天,小明和爸爸共同步测一个圆形花圃的周长他俩的起点和走的方向完全相同,小明的平均步长是54厘米,爸爸的平均步长是72厘米,由于两人的脚印有重合,并且他们走了一圈后都回到起点,这时雪地上只留下60个脚印,这个花圃的周长是多少厘米?【考点】封闭图形的植树问题 【难度】3星 【题型】解答【解析】 通过画图使学生明白从第一个重合点(起点)到下一个重合点之间的距离是216厘米,从而知在两个重合点之间,爸爸留下脚印3个,小明留下脚印4个,去掉一个重合的脚印,共留下脚印(个),
8、因为从起点到最后雪地上共留下脚印60个,所以花圃的周长是(厘米)【答案】厘米【巩固】 园林工人要在周长300米的圆形花坛边等距离地栽上树.他们先沿着花坛的边每隔3米挖一个坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一颗树.这样,他们还要挖多少个坑才能完成任务?【考点】封闭图形的植树问题 【难度】3星 【题型】解答【解析】 这道题的关键就在之间每3米一个,已经挖的坑,和后来改成5米挖一个坑,有多少个是重复不需要挖的,那么一步一步分析如下: (1)从第1个坑到第30个坑,共有多长? (米) (2)改为“每5米栽一棵树”,有多少坑仍然有用? ,(个) (3)改为“每5米栽一棵树”,一共应挖多少
9、个坑? (个) (4)还要挖多少个? (个) 【答案】个【例 5】 一个街心花园如右图所示它由四个大小相等的等边三角形组成已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?【考点】封闭图形的植树问题 【难度】3星 【题型】解答【解析】 大三角形三条边上共栽花:(9211)348(棵),中间画斜线小三角形三条边上栽花:(92)321(棵),整个花坛共栽花:482169(棵).【答案】棵【例 6】 正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米.甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后
10、的第5棵树与甲相遇(把角上的树看作第一棵树),操场四周栽了多少棵树?【考点】封闭图形的植树问题 【难度】3星 【题型】解答【解析】 因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第5棵树,实际走了4个间隔,那么甲应该走了8个间隔,相遇的树就是甲拐弯以后走的第9棵树,所以这一边有9+413(棵)树.操场周围的树一共有(13-1)448(棵).【答案】棵模块二、方阵问题【例 7】 在一次运动会开幕式上,有一大一小两个方阵合并变换成一个行列的方阵,求原来两个方阵各有多少人?【考点】方阵问题 【难度】2星 【题型】解答【解析】 根据时间多少和学生具体情况可考虑教给学生平
11、方数的概念,并记住一些简单的平方数.行列的方阵由人组成,原来的小方阵每行或每列人数都不会超过人,大方阵人数应该在之间,可取或,运用枚举法,可求出满足条件的是:大方阵有人,小方阵有人【答案】大方阵有人,小方阵有人【例 8】 小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队伍中人数大概在至人之间,你能告诉他到底有多少人吗?【考点】方阵问题 【难度】3星 【题型】解答【解析】 方阵总人数的特点:它是两个相同自然数的积,而三角形队列总人数的特点是:总数是从开始若干个连续自然数的和,我们只要在的范围内找出同时满足这两个条件的数就可以得出总人数由于队伍可以排成方阵,在至人
12、的范围内人数可能是人或人,又因为,所以总人数是人【答案】人【例 9】 同学们做操,小林站在左起第列,右起第列;从前数前面有个同学,从后数后面有个同学每行每列的人数同样多,做操的同学一共有多少人?【考点】方阵问题 【难度】2星 【题型】解答【解析】 带领学生画图求解一共有几行?列式:(行) 一共有几列?列式:(列) 一共有多少人?列式:(人)【答案】人【巩固】 一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴长颈鹿数了数,金丝猴的左边有只猴,右边也有只猴,前面有只猴,后面也有只猴小朋友,你能算出有多少只猴子在做操吗?【考点】方阵问题 【难度】2星 【题型】解答【解析】
13、 一共有多少行?列式:(行) 一共有多少列?列式:(列) 一共有多少只猴子?(只)【答案】人【巩固】 小朋友们做广播体操,小明恰好站在队列的正中心,此时无论是从前往后或者从后往前数他都排在第5个,无论是从左往右或者是从右往左数他都排在第6个,则这个队列中一共有_位小朋友【考点】方阵问题 【难度】2星 【题型】填空【关键词】2008年,陈省身杯【解析】 根据题意知:每列有(人),每行有(人),则这个队列共有:(人)【答案】人【例 10】 希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图1中实线所示,从第1行第1列开始,按照编号从小到大的顺序排成一个方阵。小明的编号是28,他排在
14、第3行第4列,则运动员共有 人。【考点】方阵问题 【难度】3星 【题型】填空【关键词】希望杯,4年级,1试【解析】 28号在第3行第4列,那么前两行共有28-424人,每行有24212人,共有1212144人。【答案】人【例 11】 四年级一班同学参加了广播操比赛,排成每行人,每列人的方阵,问方阵中共有多少学生?如果去掉一行一列还剩多少同学?【考点】方阵问题 【难度】2星 【题型】解答【解析】 可以根据“实心方阵总人数每边人数每边人数”得到行列的实心方阵人数为:(人),去掉一行一列后,还剩行列,也可通过同样的方法得出总人数为:(人)【答案】行列的实心方阵人数为人,去掉一行一列后,还剩人。【巩固
15、】 名同学排成一个方阵,后来又减去一行一列,问减少了多少人?【考点】方阵问题 【难度】2星 【题型】解答【解析】 和前两题比仅仅是数量上的增加,此时可带领学生总结规律:去掉一行一列后要加上重复的那一个名同学排成一个方阵,后来又减去一行一列,剩下的是行列的方阵,即剩下人,减少了 人【答案】人【巩固】 军训的学生进行队列表演,排成了一个行列的正方形队列,如果去掉一行一列,要去掉多少人?【考点】方阵问题 【难度】2星 【题型】解答【解析】 一行一列各人,顶点处重复人,因为角上的一个同学被重复数了两次,所以要把多算的一次减掉【答案】人【例 12】 学生进行队列表演,排成了一个正方形队列,如果去掉一行一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 植树 问题 精选 练习 例题 答案 解析 知识 点拨 考点
链接地址:https://www.31ppt.com/p-4007713.html