小学奥数--整数分拆之最值应用-精选练习例题-含答案解析(附知识点拨及考点).doc
《小学奥数--整数分拆之最值应用-精选练习例题-含答案解析(附知识点拨及考点).doc》由会员分享,可在线阅读,更多相关《小学奥数--整数分拆之最值应用-精选练习例题-含答案解析(附知识点拨及考点).doc(4页珍藏版)》请在三一办公上搜索。
1、5-2-2.整数分拆之最值应用教学目标1. 熟练掌握整除的性质;2. 运用整除的性质解最值问题;3. 整除性质的综合运用求最值.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能
2、被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除即如果ca,cb,那么c(ab)性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除即如果ba,cb,那么ca用同样的方法,我们还可以得出:性质3 如果数a能被数b与数c的积整除,那么a也能被b或c整除即如果bca,那么ba,ca性质4 如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除即如果ba,ca,且(b,c)=1,那么bca 例如:如果312,412,且(3,4)=
3、1,那么(34) 12性质5 如果数a能被数b整除,那么am也能被bm整除如果 ba,那么bmam(m为非0整数);性质6 如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除如果 ba ,且dc ,那么bdac;例题精讲模块一、2、3、5系列【例 1】 要使能被36整除,而且所得的商最小,那么分别是多少? 【考点】整除最值之2、3、5系列 【难度】3星 【题型】解答【解析】 分解为互质的几个数的乘积,分别考虑所以能被4整除,从而只可能是1,3,5,7,9.要使商最小,应尽可能小,先取,又,所以是9的倍数所以,时,取得最小值.【答案】,【例 2】 把若干个自然数1、2、3、连乘到一
4、起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少? 【考点】整除最值之2、3、5系列 【难度】4星 【题型】解答【解析】 乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了,发现只有25、50、75、100、这样的数中才会出现多个因数5,乘到55时共出现个因数5,所以至少应当写到55,最多可以写到59【答案】最小55,最大59【巩固】 把若干个自然数1、2、3、连乘到一起,如果已知这个乘积的最末53位恰好都是零,
5、那么最后出现的自然数最小应该是多少?最大是多少?【考点】整除最值之2、3、5系列 【难度】4星 【题型】解答 【解析】 1到10的乘积里会出现和10两次末尾添零的情况,估算从200开始,是个0,还要扩大至220时再增加4个0,所以最小的数应该是220,而最大应该是224【答案】最小的数应该是220,而最大应该是224【例 3】 各位数码是0、1或2,且能被225整除的最小自然数是多少?【考点】整除最值之2、3、5系列 【难度】3星 【题型】解答【解析】 被合数整除把225分解,分别考虑能被25和9整除特征。,所以要求分别能被25和9整除。要能被25整除,所以最后两位就是00。要能被9整除,所以
6、所有数字的和是9的倍数,为了使得位数尽可能少,只能是4个2和1个1,这样得到1222200。【答案】1222200【例 4】 在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。【考点】整除最值之2、3、5系列 【难度】4星 【题型】解答【解析】 方法一:设补上数字后的六位数是,因为这个六位数能分别被3、4、5整除,所以它应满足以下三个条件:第一:数字和是3的倍数;第二:末两位数字组成的两位数是4的倍数;第三:末位数字是0或5。由以上条件,4| ,且只能取0或5,又能被4整除的数的个位数不可能是5, c只能取0,因而b只能取0,2,4,6,8中之一。又
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 整数 应用 精选 练习 例题 答案 解析 知识 点拨 考点
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4007702.html