复合函数的导数练习题.doc
《复合函数的导数练习题.doc》由会员分享,可在线阅读,更多相关《复合函数的导数练习题.doc(5页珍藏版)》请在三一办公上搜索。
1、函数求导1. 简单函数的定义求导的方法(一差、二比、三取极限)(1)求函数的增量;(2)求平均变化率。(3)取极限求导数2导数与导函数的关系:特殊与一般的关系。函数在某一点的导数就是导函数,当时的函数值。3常用的导数公式及求导法则:!(1)公式,(C是常数) (2)法则:,/ 例:(1) (2) (3) (4) (5) 复合函数的导数如果函数在点x处可导,函数f (u)在点u=处可导,则复合函数y= f (u)=f 在点x处也可导,并且 (f )= 或记作 =熟记链式法则若y= f (u),u= y= f ,则=若y= f (u),u=,v= y= f ,则 =(2)复合函数求导的关键是正确分
2、析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。例1函数的导数.解:设,则 1求下函数的导数.(1) (2)!(1)y=(5x3)4 (2)y=(2+3x)5 (3)y=(2x2)3 (4)y=(2x3+x)2(1)y= (2)y= (3)y=sin(3x) (4)y=cos(1+x2)$; ; 1求下列函数的导数 | (1) y =sinx3+sin33x; (2) (3) 2.求的导数¥一、选择题(本题共5小题,每题6分,共30分)1. 函数y=的导数是( )A. B. C. D. 3. 函数y=sin
3、(3x+)的导数为( )A. 3sin(3x+) B. 3cos(3x+)C. 3sin2(3x+) D. 3cos2(3x+)4. 曲线在x=2处的导数是12,则n=( )A. 1 B. 2 C. 3 D. 45. 函数y=cos2x+sin的导数为( )A. 2sin2x+B. 2sin2x+C. 2sin2x+D. 2sin2x6. 过点P(1,2)与曲线y=2x2相切的切线方程是( )A. 4xy2=0 B. 4x+y2=0 )C. 4x+y=0 D. 4xy+2=0二、填空题(本题共5小题,每题6分,共30分)8. 曲线y=sin3x在点P(,0)处切线的斜率为_。9. 函数y=xsin(2x)cos(2x+)的导数是 。10. 函数y=的导数为 。11. 。复合函数的导数 =u3,u=1+sin3x 8.3=sin4x+2xcos4x 10. 11.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复合 函数 导数 练习题
链接地址:https://www.31ppt.com/p-4007110.html