基于单片机交通灯控制系统设计.doc
《基于单片机交通灯控制系统设计.doc》由会员分享,可在线阅读,更多相关《基于单片机交通灯控制系统设计.doc(21页珍藏版)》请在三一办公上搜索。
1、基于单片机的交通灯控制系统设计前言交通是经济和社会发展的基础性产业,是社会经济活动中人流、物流、资金流和信息流的主要载体。在现代社会中,没有高效运转的交通运输体系,就不可能有经济的持续发展。然而,随着社会经济的发展,机动车辆迅速增如,人们在赚取由机动车辆所带来的巨额利润以及充分享受汽车巨大便利的同时,也越来越受到交通拥堵、交通事故频发、环境污染加剧和燃油损耗上升所带来的诸多问题的困扰。在国外,特别是一些发达国家,由于经济发展较快,早在上个世纪60年代,交通问题就同渐突出;而我国,由于经济发展相对较晚,机动车辆拥有量相对较少,在改革开放前及初期,这一问题并不严重,但是近20多年来,随着我国经济的
2、飞速发展,城市化、汽车化进程加快,机动车辆保有量迅猛增加,我国的交通状况日渐恶化,交通拥挤以及能源、环境问题日益严重,特别是一些大城市,交通拥挤已成为制约城市经济发展的瓶颈。目前国内已有一些自主开发的城市交通控制与管理系统,但整体性能与国外同类系统相比较仍有较大差距,只在一些中小城市得到部分应用。国内城市尤其是大城市引进的交通控制系统大部分为进口的SCOOT和SCATS系统。由于我国交通流是混合交通流,和国外的交通流大不相同,国外的交通控制系统在国内的使用效果不尽人意。所以迫切需要开发适合我国国情的、具有我国自主知识产权的能达到国际先进水平的智能交通系统。交通系统是一个非线性随机性都很强的开放
3、的复杂大系统,系统维数太高,加上人的参与,对其进行有效的控制是一个非常复杂的问题。这也是现有不管是基于方案选择式的SCATS还是基于方案生成式的SCOOT系统都难于取得很好效果的原因。所以,必须采用先进的智能控制理论来解决复杂的交通系统的控制问题。本论文的研究目的就是针对城市交通问题的现状,从方法上对交通信号的优化与控制问题进行研究和探讨,以期为解决实际的城市交通问题提供有益的方法和途径。本文给出了硬件电路的设计以及系统软件架构的搭建,并阐述了一种简单合理的设计方法。为保证系统在复杂环境下工作的可靠性,增强系统的抗干扰能力是必须要解决的问题。结合实际情况,本文从硬件、软件两方面对系统进行可靠性
4、设计并取得了满意的效果。1 基于单片机的多路口交通灯系统方案设计1.1总体方案设计概述随着生活水平的提高,家庭汽车拥有量越来越多,城市交通堵塞问题越来越严重,解决城市的交通拥挤问题越来越紧迫。交通灯在这个交通环境中起着一个重要的角色,是交通管理部门管理交通的重要工具。国内的交通灯一般设在十字路口,在醒目位置用红、绿、黄三种颜色的指示灯,加上一个倒计时的显示计时器来控制行车。而目前绝大多数交通灯的时间都是设定好的,还存在以下缺点:1)两车道的车辆轮流放行时间相同且固定, 在十字路口,经常一个车道为主干道,车辆较多,放行时间应该长些;另一车道为副干道,车辆较少,放行时间应该短些。2)没有考虑紧急车
5、通过时,两车道应采取的措施,臂如,消防车或急救车执行紧急任务通过时,两车道的车都应停止,让紧急车通过。这些缺点的存在,决定了传统交通灯不能适应当前城市交通的要求,不能使城市车流的调节达到最优。针对道路交通拥挤,交叉路口经常出现拥堵的情况,提出使用智能交通灯的要求。与传统交通灯比较,智能交通灯作以下两点的改进措施:1)根据各道路路口车流量的大小自动调节通行时间。2)考虑特殊车辆通行情况,设计紧急切换开关。智能的交通灯能有效地缓解城市的交通压力,减少交通事故;为人民节省大量出行时间,创造出更多的社会价值。 1.1.1 智能交通灯的设计要求A 设计一个具有主干道的三路口的交通灯控制系统,要求主干道和
6、其他支干道道路交叉路口的车辆交替运行。车辆通行主要以主干道为主,在检测主干道车流量后,才会检测支干道车流量。根据车流量大小自动调节通行时间,车流量大,通行时间长,车流量小,通行时间短。B 在交通灯显示方面,经过红黄绿黄红的这种逻辑状态。C 东西方向、南北方向车道除了有红、黄、绿灯指示外,每一种灯亮的时间都用数码管显示器进行显示(采用倒计时的方法)。D 考虑到特殊车辆情况,设置紧急转换开关。对整个系统的设计控制图如下:图1.1.1-1 系统的设计控制图1.1.2 智能交通灯的方案论证目前设计交通灯的方案有很多, 有应用CPLD实现交通信号灯控制器的设计,有应用PLC 实现对交通灯控制系统的设计。
7、有应用单片机实现对交通信号灯设计的方法。本文采用AVR单片机作为控制器,通行倒记时显示采用LED 数码管,通行指示灯采用发光二极管,LED显示采用译码器控制,以节省端口数。特殊紧急车辆通行采用实时中断完成,车流量大小采用地感线圈检测电路完成。按以上系统构架设计,由于ATmega128单片机自单带有3计数器,多个中断源,端口很好的满足要求。该系统具有电路简单,设计方便,耗电较少,可靠性高等特点。单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。 通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中
8、央处理器、存储器和I/O接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。 单片机经过1、2、3代的发展,目前单片机正朝着高性能和多品种方向发展,它们的CPU功能在增强,内部资源在增多,引角的多功能化,以及低电压底功耗。由于ATmega128具有较多的I/O口,便于对多路口交通灯以及显示控制有一定优势,所以本文中我们采用较为先进的AVR单片机中Atmega128单片机,考虑到车辆检测器,采用地感线圈传感技术,则主干大和其他道路都得有2个地感线圈传感器,主干道有4个地感线圈传感器,其他三路口道路共需要6个地感线圈传感器,共16个地感线圈。地感线圈传感器通过接
9、收端检测到的电流变化,通过转换电路和放大电路,将信号转换成可识别的信号并传输给单片机进行时时处理。在显示方面,则采用数码管显示器与AVR单片机ATmega128相结合实现终端设备显示控制的一种方法。1.2 三路口道路通行控制方案设计三路口道路通行控制的基本设计思路是:首先对多路口控制方案的研究要有层次,先从单路口控制开始,然后将三路口控制整合起来,作为一个系统去考虑,这是一个明智的选择。所以如果把三路口道路干线上所有路口看作一个系统,在相邻路口的绿灯起始时刻建立一种时间关系,从而使车辆每到达一个路口时,正好遇到绿灯。这样,在干线上行驶的车辆就可以获得连续的通行权,那么,车辆的停车次数、排队长度
10、以及延误时间就会大大减少。控制流程分析: 从循环图分析可知:东西方向和南北方向信号灯控制是中心对称的,即无论是主十道还是支干道两侧系统对同方向的信号灯控制是同步的。 从循环图分析可知:人行道无论哪个方向,系统对两侧4 个信号灯的控制也是同步的,且人行道的红绿灯变化和行车道的红绿灯变化应该是一致的。 实现三个路口的协调工作模式,经过对三路口车辆的检测,并且对各交通灯进行协调做出适当的控制。图1.2.1-1 三个路口图通过对以上整体思路的分析,以用地感线圈传感器检测车辆、单片机进行控制、锁存芯片和显示译码芯片的配合来实现控制L E D灯和数码管。通过锁存芯片实现单片机口的分时复用,简单易行,且编程
11、简单,能实现数据的快速交换以及单片机的资源的充分利用。看图:图1.2.1-1 单片机资源分布图通过AVR单片机实现对智能交通的控制。1.3 车流量检测方案1.3.1 地感线圈地感线圈是本智能交通自控系统中的最主要的检测元件,主要由埋设在地表面下的线圈和信号提取与输出装置构成。地感线圈的技术规格由车道的大小和埋设的深度决定,地感线圈主要由内径,外径,线径和匝数四大因素组成,一旦这四大因素确定,线圈的规格型号即可确定。地感线圈工作在最佳状态下,线圈的电感量应保持在100uH-300uH之间,在线圈电感不变的情况下,线圈的匝数与周长有关系,周长越小、匝数就越多,线圈匝数参考表1.3.1-1。表1.3
12、.1-1 线圈匝数参考表线圈周长线圈匝数300cm, 电感lOOuH-3OOuH5-6匝3006OOcm4-5匝600-1000cm4-5匝10002500cm3匝25OOcm以上2匝由于道路下可能埋设有各种电缆管线、钢筋、下水道盖等金属物质,这些都会对线圈的实际电感值产生很大影响,在实际施工时应使用电感测试仪实际测试地感线圈的电感值来确定施工的实际匝数,只要保证线圈的最终电感值在合理的工作范围之内(如在100uH-300uH之间),否则,应对线圈的匝数进行调整。在理想状况下(不考虑一切环境因素的影响),地感线圈只考虑面积的大小(或周长)和匝数,可以不考虑导线的材质。但在实际工程中,必须考虑导
13、线的机械强度和高低温抗老化问题,在某些环境恶劣的地方还必须考虑耐酸碱腐蚀问题。在实际的工程中,建议采用01cm以上铁氟龙高温多股软导线。以一个60X6ocrn的模拟十字路口交通模型为例,根据实际十字路口的尺寸按比例缩放,得到的车道大小约为3cm。设计时选择的线圈内径为1.8*2.3 cm、外径为2.0*2.5 cm、线径为0.05cm、匝数为180n。1.3.2 信号转换装置地感线圈的工作原理基于振荡电路原理,信号转换装置是由一种基于电磁感应原理的信号转换线路构成,该转换电路主要由两只三极管组成共射极振荡器和地感线圈(电感元件)、电阻、电容等元件组成的耦合振荡电路组成,信号转换装置的电路原理如
14、图1.3.2-1所示。图1.3.2-1 信号转换装置的电路原理图Ul和U2组成共射极振荡器,电阻R3是两只三极管的公共射极电阻,并构成正反馈,地感线圈T作为检测器谐振电路中的一个电感元件,与振荡回路一起形成LC谐振。当有大的金属物(汽车)通过时,由于空间介质发生变化引起了振荡频率的变化(有金属物体时振荡频率升高),将会使线圈中单位电流产生的磁通量增加,从而导致线圈电感值发生微小变化,进而改变LC谐振的频率,这个频率的变化就作为有汽车经过地感线圈的路面时的输入信号,再将此信号通过由R7和C3组成的LC滤波电路,输出稳定的直流电压,此电压即可输入到ATmega128控制系统。1.3.3 地感线圈的
15、埋设方法以十字路口中个方向的道路为例,考虑到右行通道车辆可以直接通过,只在直行通道和左行通道上埋设地感线圈。在每个通道上均埋设了两个地感线圈,具体埋设位置参考图1.3.1-1。前一个紧挨停车线,检测驶离该车道的车量数;后一个埋设在距停车线5-lOcm处,一般考虑埋设在预计可正常停车数量所占位置的l-2倍处,检测驶入该车道的车量数;二者之差,既是该车道还存在的车辆数,也是等待通行的车辆数,此数据也是控制该路口交通灯状态的依据。图1.3.3-1 地感线圈埋设平面位置图地感线圈埋设首先要用切路机在路面上切出槽来,在四个角上进行45 角处理,防止尖角破坏线圈电缆;切槽宽度一般为0.4-0.8cm,深度
16、3-5cm,同时还要为线圈引线切一条通到路边的槽,将双绞好的输出引线通过引出线槽引出。地感线圈埋设是在车道路面铺设完成后或铺设路面的同时进行的,在线圈埋好以后,了加强保护,用沥青或软性树脂将切槽封上。线圈安装时,应该尽量避免焊接点,万不得已则必须良好接触井敞好绝缘;为避免电磁干扰,馈线使用屏蔽电缆,屏蔽电缆的屏蔽线在信号转换器端良好接地;使用双绞线,防止两个相邻线圈的馈线或与电源220v之间的相互干扰。2 智能交通控制系统硬件设计2.1 ATmega128简介主 控 制 器 采 用 ATmega128 , 是 美 国 ATMEL 公司生产的低功 耗,高性能 的8位单片 机 ,片 内 含128k
17、字节的可系统编程的 Flash 只读程序存储 器, 器 件 采 用 ATMEL 公 司 的 高 密 度 、非 易 失 性存储技术生产,兼容标准 8051 指令系统及引脚。 它集 Flash 程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用 8 位微处理器于单片芯片中 ,ATMEL 公司的功能强大 , 低 价 位 ATmega128 单片机可为我们提供许多高性价比的应用场合,可灵活 应用于各种控制领域对Atmega128产品特点: 高性能、低功耗的 AVR 8 位微处理器 先进的 RISC 结构 133 条指令 大多数可以在一个时钟周期内完成 32 x 8 通用工作寄存器 + 外设控
18、制寄存器 全静态工作 工作于16 MHz 时性能高达16 MIPS 只需两个时钟周期的硬件乘法器 非易失性的程序和数据存储器 128K 字节的系统内可编程Flash寿命: 10,000 次写/ 擦除周期 具有独立锁定位、可选择的启动代码区通过片内的启动程序实现系统内编程真正的读- 修改- 写操作 4K字节的EEPROM寿命: 100,000 次写/ 擦除周期 4K 字节的内部SRAM 多达64K 字节的优化的外部存储器空间 可以对锁定位进行编程以实现软件加密 可以通过SPI 实现系统内编程 JTAG 接口( 与IEEE 1149.1 标准兼容) 遵循JTAG 标准的边界扫描功能 支持扩展的片内
19、调试 通过JTAG 接口实现对Flash, EEPROM, 熔丝位和锁定位的编程 外设特点 两个具有独立的预分频器和比较器功能的8 位定时器/ 计数器 两个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器 具有独立预分频器的实时时钟计数器 两路8 位PWM 6路分辨率可编程(2 到16 位)的PWM 输出比较调制器 8路10 位ADC8 个单端通道7 个差分通道2 个具有可编程增益(1x, 10x, 或200x)的差分通道 面向字节的两线接口 两个可编程的串行USART 可工作于主机/ 从机模式的SPI 串行接口 具有独立片内振荡器的可编程看门狗定时器 片内模拟比较器 特殊的处理器特
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 交通灯 控制系统 设计
链接地址:https://www.31ppt.com/p-4007036.html