初二轴对称模拟题以及答案.doc
《初二轴对称模拟题以及答案.doc》由会员分享,可在线阅读,更多相关《初二轴对称模拟题以及答案.doc(22页珍藏版)》请在三一办公上搜索。
1、一选择题(共6小题)1如图,O是ABC的两条垂直平分线的交点,BAC=70,则BOC=()A120B125C130D1402如图,等边ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则FAE+AEF的度数是()A60B110C120D1353如图,等腰RtABC中,AB=AC,A=90,点D为BC边的中点,E、F分别在AB、AC上,且EDFD,EGBC于G点,FHBC于H点,下列结论:DE=DF;AE+AF=AB;S四边形AEDF=SABC;EG+FH=BC其中正确结论的序号是()A只有B只有C只有D4如图所示,ABC是等边三角形,AQ=PQ,PRAB于R点,
2、PSAC于S点,PR=PS,则四个结论:点P在A的平分线上;AS=AR;QPAR;BRPQSP,正确的结论是()AB只有,C只有D只有5如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:AD=BE;PQAE;AP=BQ;DE=DP其中正确的是()A只有B只有C只有D只有6如图,ABC,ACB的平分线相交于F,过点F作DEBC,交AB于D,交AC于E,连接AF,那么下列结论正确的是()BDF,CEF都是等腰三角形;BFC=90+BAC;ADE的周长为AB+AC;AF平分BACAB
3、CD二填空题(共2小题)7如图,BAC=30,AD平分BAC,DEAB于E,DFAB,已知AF=4cm,则DE=_8如图,D为等边三角形ABC内一点,AD=BD,BP=AB,DBP=DBC,则BPD=_度三解答题(共10小题)9如图,已知点P是O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A、B两点,并交ST于点C求证:10在ABC中,点P为BC的中点(1)如图1,求证:AP(AB+AC);(2)延长AB到D,使得BD=AC,延长AC到E,使得CE=AB,连接DE如图2,连接BE,若BAC=60,请你探究线段BE与线段AP之间的数量关系写出你的结论,并加以证明;请在图3中证
4、明:BCDE11如图,在四边形ABCD中,已知BAD=60,ABC=90,BCD=120,对角线AC,BD交于点S,且DS=2SB,P为AC的中点求证:(1)PBD=30;(2)AD=DC12如图,ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G求证GD=GE13如图,ABC中,BDAC于点D,点F为BC边上的中点,点E在AB边上,若EF=DF,判断CE与AB的位置关系,并说明理由14如图,在等腰RtABC中,ACB=90,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE连接DE、DF、EF(1)求证:ADFC
5、EF(2)试证明DFE是等腰直角三角形15如图,AB=AC,E在线段AC上,D在AB的延长线上,且有BD=CE,连DE交BC于F,过E作EGBC于G,求证:FG=BF+CG16如图,ABC是等边三角形,D是三角形外一动点,满足ADB=60,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明17已知,在ABC中,CA=CB,CA、CB的垂直平分线的交点O在AB上,M、N分别在直线AC、BC上,MON=A=45(1)如图1,若点M、N分别在
6、边AC、BC上,求证:CN+MN=AM;(2)如图2,若点M在边AC上,点N在BC边的延长线上,试猜想CN、MN、AM之间的数量关系,请写出你的结论(不要求证明)18已知,如图,BD是ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想A的度数,并证明;(2)若BC=BA+CD,求A的度数?(3)若A=100,求证:BC=BD+DA一选择题(共6小题)1如图,O是ABC的两条垂直平分线的交点,BAC=70,则BOC=()A120B125C130D140考点:线段垂直平分线的性质。767691 专题:计算题。分析:根据线段垂直平分线性质,OA=OB=OC根据等腰三角形性质和三角形内角
7、和定理,先求出OBC+OCB,再求BOC解答:解:O是ABC的两条垂直平分线的交点,OA=OB=OC,OAB=OBA,OAC=OCA,OBC=OCBBAC=70,OBA+OCA=70,OBC+OCB=40BOC=18040=140故选D点评:此题考查了线段垂直平分线性质、等腰三角形性质、三角形内角和定理等知识点,渗透了整体求值的思想方法,难度不大2如图,等边ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则FAE+AEF的度数是()A60B110C120D135考点:等边三角形的性质。767691 专题:几何图形问题。分析:FAE+AEF可转化为FAE+EBC
8、+C,由EBC=BAD,所以又可转化为FAE+BAD+C,进而可求解解答:解:在等边ABC中,ABC=C=60,AB=BC,又BD=CE,ABDBCE,BAD=CBE,FAE+AEF=FAE+EBC+C=FAE+BAD+C=60+60=120,故选C点评:题中重点在于由BAD=CBE而得FAE+EBC+C=FAE+BAD+C的过程,即角的转化3如图,等腰RtABC中,AB=AC,A=90,点D为BC边的中点,E、F分别在AB、AC上,且EDFD,EGBC于G点,FHBC于H点,下列结论:DE=DF;AE+AF=AB;S四边形AEDF=SABC;EG+FH=BC其中正确结论的序号是()A只有B只
9、有C只有D考点:等腰三角形的性质;全等三角形的判定与性质。767691 分析:考查直角三角形及等腰三角形的性质及判定问题,利用全等三角形判断线段相等,例如在中,可求解RtEGDRtDHF,同样后面几问也都可用全等解答解答:解:如图所示,DEDF,EDG+FDH=90EDG+GED=90GED=FDH,RtEGDRtDHF,DE=DF,正确;连接AD,由得,DE=DF,DC=AD,FDC=ADE,可证AEDCFD,FC=AE,AE+AF=AB,正确,BE=AF,CAD=B=45,AD为公共边,ADFDEB,又AEDCFD,也正确,中由得GD=FH,又B=45BG=EG,EG+FH=BC,正确都正
10、确,故选D点评:熟练掌握等腰三角形及直角三角形的性质,能够通过全等求角相等,线段相等4如图所示,ABC是等边三角形,AQ=PQ,PRAB于R点,PSAC于S点,PR=PS,则四个结论:点P在A的平分线上;AS=AR;QPAR;BRPQSP,正确的结论是()AB只有,C只有D只有考点:等边三角形的性质;全等三角形的判定与性质。767691 分析:考查等边三角形的性质,在等边三角形中,角平分线即为中线,也为垂线,然后再利用全等,角相等进行判断解答:解:ABC是等边三角形,PRAB,PSAC,且PR=PS,P在A的平分线上,正确;由可知,PB=PC,B=C,PS=PR,BPRCPS,AS=AR,正确
11、;AQ=PQ,PQC=2PAC=60=BAC,PQAR,正确;由得,PQC是等边三角形,PQSPCS,又由可知,BRPQSP,也正确都正确,故选A点评:熟练掌握等边三角形的性质5如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:AD=BE;PQAE;AP=BQ;DE=DP其中正确的是()A只有B只有C只有D只有考点:全等三角形的判定与性质;等边三角形的性质。767691 专题:动点型。分析:利用三角形全等,得到结论,利用排除法即可求解解答:解:等边ABC和等边CDE,AC=BC
12、,CD=CE,ACB=DCE=60,ACB+BCD=DCE+BCD,即ACD=BCE,ACDBCE(SAS),AD=BE成立,排除C,由(1)中的全等得CBE=DAC,又ACB=DCE=60,BCD=60,即ACP=BCQ,又AC=BC,CQBCPA(ASA),CP=CQ,又PCQ=60可知PCQ为等边三角形,PQC=DCE=60,PQAE成立,排除D,由CQBCPA得AP=BQ成立,排除A故选B点评:作为选择题出现,应掌握这类型题基本的做题思路,判断出两对三角形全等,中间的三角形为等边三角形等6如图,ABC,ACB的平分线相交于F,过点F作DEBC,交AB于D,交AC于E,连接AF,那么下列
13、结论正确的是()BDF,CEF都是等腰三角形;BFC=90+BAC;ADE的周长为AB+AC;AF平分BACABCD考点:等腰三角形的性质;三角形内角和定理;角平分线的性质。767691 分析:根据平分线的性质、平行线的性质,借助于等量代换可求出DBF=DFB,即BDF是等腰三角形,同理CEF都是等腰三角形;利用两次三角形的内角和,以及平分线的性质,进行等量代换,可求的BFC和BAC之间的关系式;由可得ADE的周长为AB+AC;三角形的三条角平分线交于一点,可知AF平分BAC解答:解:BF是ABC的角平分线,ABF=CBF,又DEBC,CBF=DFB,DB=DF即BDF是等腰三角形,同理ECF
14、=EFC,EF=EC,BDF,CEF都是等腰三角形;在ABC中,BAC+ABC+ACB=180(1)在BFC中CFB+FBC+FCB=180即CFB+ABC+ACB=180(2)(2)2(1)得BFC=90+BAC;BDF,CEF都是等腰三角形BD=DF,EF=EC,ADE的周长=AD+DF+EF+AE=AD+BD+AE+EC=AB+AC;F是ABC,ACB的平分线的交点第三条平分线必过其点,即AF平分BAC故选C点评:本题考查了等腰三角形的性质及角平分线的性质,以及三角形内角和定理解答,涉及面较广,需同学们仔细解答二填空题(共2小题)7如图,BAC=30,AD平分BAC,DEAB于E,DFA
15、B,已知AF=4cm,则DE=2cm考点:全等三角形的判定与性质;平行线的性质;角平分线的性质;等腰三角形的判定。767691 专题:计算题。分析:由角平分线的定义和平行线的性质易得DF=AF=4m,DFC=BAC=30,作DGAC于G,根据角平分线的性质可得,DG=DE,在RtFDG中,易得DG=DF=2cm,即可求得DE解答:解:作DGAC于G,AD平分BAC,BAD=CAD,DE=DG,DFAB,ADF=BAD,DFC=BAC=30,ADF=CAD,DF=AF=4m,RtFDG中,DG=DF=2cm,DE=2cm故答案为:2cm点评:此题主要考查角平分线、平行线的性质和直角三角形中30锐
16、角所对直角边等于斜边的一半,作辅助线是关键8如图,D为等边三角形ABC内一点,AD=BD,BP=AB,DBP=DBC,则BPD=30度考点:等边三角形的性质。767691 专题:几何图形问题。分析:作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可解答:解:作AB的垂直平分线,ABC为等边三角形,ABD为等腰三角形;AB的垂直平分线必过C、D两点,BCE=30;AB=BP=BC,DBP=DBC,BD=BD;BDCBDP,所以BPD=30故应填30点评:此题难度不大,解答此题的关键是作出辅助线,再利用等边三角形的性质求解三解答题(共10小题)9如图,已知点P是O外一点,PS,P
17、T是O的两条切线,过点P作O的割线PAB,交O于A、B两点,并交ST于点C求证:考点:切割线定理;勾股定理;相交弦定理。767691 专题:证明题。分析:根据C、E、O、D四点共圆,根据切割线定理可得:PCPE=PDPO,并且可以证得RtSPDRtOPS,即可证得PS2=PDPO,再根据切割线定理即可求解解答:证明:连PO交ST于点D,则POST;连SO,作OEPB于E,则E为AB中点,于是因为C、E、O、D四点共圆,所以PCPE=PDPO又因为RtSPDRtOPS所以即PS2=PDPO而由切割线定理知PS2=PAPB所以即点评:本题主要考查了切割线定理以及三角形相似的证明,注意对比例式的变形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 轴对称 模拟 以及 答案
链接地址:https://www.31ppt.com/p-4005766.html