九年级数学-圆的知识点复习ppt课件.ppt
《九年级数学-圆的知识点复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《九年级数学-圆的知识点复习ppt课件.ppt(26页珍藏版)》请在三一办公上搜索。
1、圆知识点复习,点与圆的位置关系,点在圆内 dr 点A在圆外,直线与圆的位置关系,直线与圆相离 dr 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dr 有两个交点,圆与圆的位置关系,外离(图1)无交点 dR+r外切(图2)有一个交点 d=R+r相交(图3)有两个交点 R-rdR+r内切(图4)有一个交点 d=R-r内含(图5)无交点 0 dR-r,垂径定理,垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所
2、对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:AB是直径 ABCD CE=DE 或 或 推论2:圆的两条平行弦所夹的弧相等。即:在O中,ABCD,圆心角定理,圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论 也即:AOB=DOE AB=DE OC=OF 或,圆周角定理,圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半即:AOB和ACB是 所对的圆心角和圆周角 AOB=2ACB圆周角定理的推论:推论1:同弧或等弧
3、所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在O中,C、D都是所对的圆周角 C=D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在O中,AB是直径 或C=90 C=90 AB是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在ABC中,OC=OA=OB ABC是直角三角形或C=90注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。,弦切角定理,弦切角定理:弦切角等于所夹弧所对的圆周角 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。即:MN是切线,AB是弦 BA
4、M=BCA,圆内接四边形,圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在O中,四边形ABCD是内接四边形 C+BAD=180 B+D=180 DAE=C,切线的性质与判定定理,(1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可 即:MNOA且MN过半径OA外端 MN是O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心以上三个定理及推论也称二推一定理:即:过圆心 过切点 垂直切线中知道其中两个条件推出最后一个条件 MN是切线 MNOA,切线长
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 知识点 复习 ppt 课件
链接地址:https://www.31ppt.com/p-4002041.html