初等数论与中学数学竞赛课件.ppt
《初等数论与中学数学竞赛课件.ppt》由会员分享,可在线阅读,更多相关《初等数论与中学数学竞赛课件.ppt(81页珍藏版)》请在三一办公上搜索。
1、初等数论与中学数学竞赛,数学与统计学院 陈国慧,一、数论概述,人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(注:现在,自然数的概念有了改变,包括正整数和0)。对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。,数论概述,也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。人们在对整数进行运算的应
2、用和研究中,逐步熟悉了整数的特性。比如,整数肤浅地划分可分为两大类奇数和偶数(通常被称为单数、双数);深刻地划分可以分为素数,合数,“1”等。,数论概述,数论这门学科最初就是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。数论这一数学分支,历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”.,数论的发展简况,自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是
3、说还没有形成完整统一的学科。我国古代,许多著名的数学著作中都有关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题整除性问题就有系统的研究,关于质数、合数、因数、倍数等一系列概念也已经被提出来应用了。,后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整
4、理加工成为一门系统的学科的条件已经完全成熟了。,德国数学家高斯集中前人的大成,写了一本书叫做算术探讨,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。在算术探讨中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和已知的方法进行了分类,还引进了新的方法。,数论的基本内容,数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。初等数论是数论中不求助于其他数学学科的帮
5、助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。,关于“中国剩余定理”:公元4-5世纪之交的孙子算经中有一个有趣的问题:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二。问:物几何?”秦九韶对同余方程组进行了系统的理论研究,在数书九章中创立了称之为大衍求一术的一整套算法,即把上述问题的解法推广至盛誉中外的“中国剩余定理”-孙子定理。,解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做
6、出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。,二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。,代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直
7、角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。,数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;有文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。,此外,数论的许多比较深刻的研究成果也在近似分
8、析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题,费尔马大定理:起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚
9、昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:an+bn=cn是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。,费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。,历史上费尔马大定理高潮迭起,传奇不断。其惊
10、人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限19082007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。,历史的新转机发生在1986年夏,贝克莱瑞波特证明了:费尔马大定理包含在“谷山丰志村五朗猜想”之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥
11、大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。,这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国数学年刊第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截
12、止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。,孪生素数问题:,孪生素数是指一对素数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生素数。孪生素数猜想,即是否存在无穷多对孪生素数,是数论中未解决的一个重要问题。哈代-李特尔伍德猜想(Hardy-Littlewood conjecture)是孪生素数猜想的一个增强形式,猜测孪生素数的分布与素数定理中描述的素数分布规律相类似。1900年希尔伯特在国际数学家大会上说有了素数公式,哥德巴赫猜想和孪生素数猜想都可以得到解决。,素
13、数定理,素数定理描述素数的大致分布情况。素数的出现规律一直困惑著数学家。一个个地看,素数在正整数中的出现没有什么规律。可是总体地看,素数的个数竟然有规可循。对正实数x,定义(x)为不大于x的素数个数。数学家找到了一些函数来估计(x)的增长。以下是第一个这样的估计。(x)x/ln x 其中ln x为x的自然对数。上式的意思是当x趋近,(x)和x/ln x的比趋近1.(注:该结果为高斯所发现)。,歌德巴赫猜想:,哥德巴赫猜想的由来1729年1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:我的问题是这样的:随便取某一个奇数,比
14、如77,可以把它写成三个素数之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。,歌德巴赫猜想:,但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。欧拉回信说:“这个命题看来是正确的”。但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。,歌德巴赫猜想,事实上,
15、任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。即1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。,中国数学家的贡献,华罗庚是中国最早从事哥德巴赫猜想的数学家。19361938年,他赴英国剑桥大学留学,在哈代的指导下从事数论研究,并开始研究哥德巴赫
16、猜想,取得了很好的成果,证明了对于“几乎所有”的偶数,猜想(1)都是正确的。1950年,华罗庚从美国回国,在中科院数学研究所组织数论研究讨论班,选择哥德巴赫猜想作为讨论的主题,倡议并指导他的一些学生研究这一问题。,他曾对学生们说:“我并不是要你们在这个问题上作出成果来。我的着眼点是哥德巴赫猜想跟解析数论中所有的重要方法都有联系,以哥德巴赫猜想为主题来学习,将可以学会解析数论中所有的重要方法哥德巴赫猜想真是美极了,现在还没有一个方法可以解决它。”参加这个数论讨论班的学生有王元、潘承洞和陈景润等。,出乎华罗庚的意料,学生们在哥德巴赫猜想的证明上取得了相当好的成绩。1956年,王元证明了“34”;同
17、年,原苏联数学家阿维诺格拉朵夫证明了“33”;1957年,王元又证明了“23”;潘承洞于1962年证明了“15”;1963年,潘承洞、巴尔巴恩与王元又都证明了“14”;1966年,陈景润在对筛法作了新的重要改进后,证明了“12”。,1974年,由英国数学家哈勃斯坦和西德数学家李希特合著的筛法一书出版,书中以“陈氏定理”作为最后一章的标题。书中写道:“我们本章的目的是为了证明陈景润下面的惊人定理,我们在前10章已经付印时才注意到这一结果。从筛法的任何方面来说,它都是光辉的顶点。”华罗庚曾对王元说:“在我的学生的工作中,最使我感动的是12。,初等数论与中学教学,在中学数学学习过程中,初等数论的知识
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初等 数论 中学数学 竞赛 课件

链接地址:https://www.31ppt.com/p-4000628.html