《合成孔径雷达课件.ppt》由会员分享,可在线阅读,更多相关《合成孔径雷达课件.ppt(31页珍藏版)》请在三一办公上搜索。
1、第十章,合成孔径雷达,(,Synthetic-Aperture Radar,),10.1,合成孔径雷达简介(,Introduction,to,Synthetic,Aperture,Radar,),10.2,合成孔径雷达的原理(,Principle,of,Synthetic-Aperture,Radar,),10.3,合成孔径雷达的应用(,Application,of,SAR,),10.1,合成孔径雷达简介,(,Introduction to,Synthetic Aperture Radar,),10.1.1,加,拿,大,的,雷,达,卫,星,和,星,载,合,成,孔,径,雷,达,(,Canadas
2、,RADARSAT,&,Onboard,SAR,),10.1.2,合,成,孔,径,雷,达,的,分,辨,率,(,Resolution,of,Synthetic,Aperture,Radar,),合成孔径雷达,?,合成孔径雷达(,SAR,)是一种主动式微波成像雷达,,通过测量海面后向散射信号的幅值及其时间相位,并,通过适当的处理后,能产生标准化后向散射截面,(,NRCS,)的图像。,?,标准化后向散射截面(,NRCS,)携带着海面信息,它,反映了雷达观测到的海面粗糙度。这种图像能极为详,细地显示出海面空间细节的变化,其分辨率为几米到,几十米的量级。,?,由于合成孔径雷达(,SAR,)工作在微波波段
3、,即使在,黑夜也能正常工作,它发射的微波还可以穿透云层,,因而不受恶劣天气的影响。这种全天候、全天时和高,分辨率的海洋观测优势是可见光和红外传感器及其它,微波传感器所没有的。,10.1.1,加拿大的雷达卫星和星载合成孔径雷达,(,Canada,s RADARSAT&Onboard SAR,),?,加拿大的雷达卫星(,RADARSAT,)采用圆形、太阳同步轨道,经过“降,轨点”(,descending node,)的当地时间是,18:00,左右,卫星飞行高度,(,altitude,)是,798 km,,轨道平面的倾角(,inclination,)是,98.6,,轨道,周期(,orbit peri
4、od,)是,100.7 minutes,,每天运行,14,又,7/24,个轨道周期,,循环周期(,recurrent period,)是,24 days,,子循环周期(,sub-cycles,),是,7 days,和,3 days,,全球覆盖(,global coverage,)的再访问时间,(,revisit time,)是,4,或,5 days,,北美洲覆盖的再访问时间(,revisit time,),是,3 days,。,?,当合成孔径雷达对地球表面扫描的时候,雷达波束(,radar beam,)达到,地面,经反射(,reflection,)和后向散射(,backscatter,)返回的
5、电磁波,被雷达接收。接收后的信号经过数字化处理变成数字资料(,digital,data,),这些数字资料包含着被探测点的斜率(,slope,)和粗糙度,(,roughness,)信息。每个探测点的数据代表一个像素(,pixel=picture,element,),许多像素合成一个二维图像(,image,)。,?,图,10-1,显示了加拿大的雷达卫星,RADARSAT,携带的合成孔径雷达(,SAR,)对地,面扫描的几种方式。,RADARSAT,携带有,C,波段,5.3 GHz,水平极化的合成孔径雷达,SAR,。,?,标准工作方式(,Standard Mode,),宽视场工作方式(,Wide Mo
6、de,),精细分辨率,工作方式(,Fine Resolution Mode,),狭窄扫描工作方式(,SCANSAR Narrow,Mode,),宽扫描工作方式(,SCANSAR Wide Mode,),扩展的高入射角工作方式,(,Extended High Mode,),扩展的低入射角工作方式(,Extended Low Mode,),图,10-2,显示了在,500km,刈幅的宽扫描工作方式(,SCANSAR Wide Mode,)下,,RADARSAT,星上合成孔径雷达(,SAR,)在一天内的地面扫描覆盖。,图,10-3,显示了,RADARSAT,星上合成孔径雷达(,SAR,),1998,年
7、,9,月,29,日监,测到的溢油在海表面分布图像。,图,10-4,显示了的描述合成孔径雷达,SAR,(,Synthetic Aperture Radar,)观测陆地和,海洋的几何。,与合成孔径雷达观测陆地和海洋的几何学有关的变量,?,y,:由雷达脉冲宽度确定的海面的距离分辨率(单位是,m,)(,range,resolution,on,the,surface,determined,by,pulse,width,),?,x,:由多普勒效应产生的方位分辨率(,azimuth resolution,)(单位是,m,),(,azimuth resolution on the surface genera
8、ted by Doppler effect,),?,r,:,从卫星到探测点的距离(单位是,m,)(,range from satellite to the,detected area,),?,c,:,电磁波的速度即光速(单位是,m,s,-1,)(,velocity of light,),?,:,雷达脉冲持续时间(单位是,s,)(,radar pulse duration,),?,r=c,:雷达发出的脉冲宽度(单位是,m,)(,pulse width transmitted by,radar,),?,:,雷达波束与垂直方向之间的夹角,即入射角(,incidence angle measured,
9、from vertical,),?,:,雷达波束与卫星飞行方向之间的夹角,即方位角(,azimuth angle of radar,beam from satellite moving direction,),?,:方位角分辨率(,azimuth angle resolution,),?,:被散射的雷达信号的多普勒频率(单位是,Hz,)(,Doppler frequency of,scattered radar signal,),?,D,:天线的孔径(,aperture of antenna,),?,对于雷达,由脉冲持续时间,或者等价地说脉冲宽度确定的距离分辨率是,(10-1),?,由多普勒效
10、应产生的方位分辨率是,(10-2),?,式中,X,D,代表卫星在整个采样时间内移动的距离(,distance,),与真实孔,径雷达的方位分辨率比较,我们发现公式(,10-2,)中的分母,2X,D,sin,和,真实孔径(,aperture,),D,作用一样;所以,依据多普勒效应原理工作的雷,达被称为合成孔径雷达,SAR,(,Synthetic,Aperture,Radar,)。依据多普,勒效应和脉冲压缩技术,合成孔径雷达可以具有很高的地面分辨率。,?,因为卫星到探测点的距离,r,在海面的投影与,y,平行,所以,y,称为距离分辨,率。,x,近似地等于方位角分辨率,与卫星到探测点的距离,r,的乘积,
11、因此,被称为方位分辨率。,?,?,?,?,sin,2,c,y,?,?,?,sin,2,D,X,r,x,?,10.2,合成孔径雷达的原理,(,Principle of,Synthetic-Aperture Radar,),10.2.1,多普勒效应(,Doppler Effect,),10.2.2,方位分辨率(,Azimuth Resolution,),10.2.3,距离分辨率(,Range Resolution,),10.2.4,真实孔径侧视雷达,SLAR,(,Side-Looking Aperture Radar,),10.2.1,多普勒效应,(,Doppler Effect,),?,当波源和
12、观察者有相对运动时,观察者接收到的频率和波源发出的,频率会产生差别,这种现象叫多普勒效应。,两者相互接近时,观察者接收到的频率升高;,两者相互远离时,观察者接收到的频率降低。,例如,在铁路附近人们会听到急驶而来的火车的鸣笛声音调高昂;,火车驰去时,鸣笛声音调变得低沉。,1842,年奥地利物理学家多普勒首先对这种现象做出了解释。,?,波源与观察者的相对运动有三种情况:,第一种是观察者静止于媒质中,波源相对于媒质运动;,第二种是波源静止在媒质中,观察者相对于媒质运动;,第三种情况是波源与观察者都相对于媒质运动。,我们假设某一声源发出的声波频率为,f,,波长为,,它们与声波传播速度,v,的关,系为,
13、(,10-3,),图,10-5,给出了阐述多普勒效应的示意图。,?,?,v,f,?,图,10-5,给出了阐述多普勒效应的示意图。如图所示,假设波源以速度,vS,由,S,向,B,做匀速直线运动,在前方一个波长位置,B,点有一个固定的波接收,装置。首先,波源在位置,S,发出频率为,f,和波长为,的一个波;经过,T=1/f,的时间以后,波源前进到位置,S,。这里,T,是波的周期,并且,(,10-4,),?,当波前以速度,v,达到,B,点的时候,波源以速度,vS,达到了位置,S,。此时,,B,点接收到的声波波长,为,(,10-5,),?,因此,在,B,点接收到的波动频率,f,是,?,?,(,10-6,
14、),?,由于,f f,,故在,B,点接收到的波动频率比波源发出的频率要高。当波源,以速度,vS,由,S,点背向,B,做匀速直线运动时,用同样的方法可以导出,(,10-7,),?,这时在,B,点接收的波动波长,变长,对应频率,f,有所降低。,f,v,T,v,SS,s,s,?,?,?,f,v,v,f,v,f,v,SS,SB,B,S,s,s,?,?,?,?,?,?,?,?,f,v,v,v,v,f,s,?,?,?,?,f,v,v,s,?,?,?,f,v,v,v,f,s,?,?,?,第二种运动是波源不动,而位于,B,点的接收装置以速度,vS,向着波源做匀,速直线运动。这相当于波动的传播速度增加,变为,v
15、+vS,。这样,虽然波,源发出的频率保持不变,但是接收装置接收到的波动频率变为,(,10-8,),?,因此,接收装置接收到的频率比波源发出的频率要高。当,B,点的接收装,置以速度,vS,背向波源运动时,同样可知接收到的波动频率,f,为,(,10-9,),?,即接收的频率,f,低于波源发出的频率,f,。,?,由此可见,只要波源与接收装置之间存在着相对运动,接收到的频率就,不同于发射的频率。两者之间的距离缩短时,接收频率高于发射频率,,反之,接收频率低于发射频率。这就是多普勒效应(,Doppler effect,)。,在声波领域发现了多普勒效应以后,经过几十年的研究,,1938,年科学家,证明了在
16、电磁波领域内同样存在多普勒效应。目前,利用多普勒效应研,制出的导航、测距、跟踪、和气象观测等雷达系统已得到了广泛的应用。,f,v,v,v,v,v,f,s,s,?,?,?,?,?,f,v,v,v,f,s,?,?,?,图,10-4,可用于解释雷达的多普勒效应。如图所示,安装在卫星上的合成孔径雷达,以一条很窄的波束向前下方的地球表面发射频率为,f,0,的电磁波。卫星与被探测点,之间存在相对运动,卫星与被探测点之间的相对速度,w,等于卫星飞行速度矢量,w,在波束方向上的投影,即,(,10-10,),?,根据(,10-6,)可知,在探测点所接收的电磁波频率,f,为,(,10-11,),?,式中,c,是电
17、磁波的传播速度。由于海表面的镜面反射(也称为镜点散射)和后向,散射作用,达到探测点的电磁波以的频率向周围的空间进行散射,其中有一部分,能量返回到卫星上,被雷达所吸收。由于此时卫星与探测点仍有相对运动,只是,探测点变成了波源。因此,雷达接收到的回波频率,又不同于被探测点散射的频,率,f,,根据公式(,10-8,),可以获得,(,10-12,),?,将公式(,10-11,)代入(,10-12,),可获得雷达接收到频率,f,与雷达发射频率,f,0,之间,的关系,即,?,(,10-13,),?,由上式可见,波束指向卫星前下方时,f,f,0,,即雷达接收的频率高于发射的频率。,同样可以得出,当波束指向卫
18、星后下方时,接收频率,f,低于发射频率,f,0,。,?,?,cos,w,w,0,f,w,c,c,f,?,?,f,c,w,c,f,?,?,0,f,w,c,w,c,f,?,?,?,10.2.2,方位分辨率,?,由相对运动所引起的接收频率与发射频率之间的“差频”,,通常被称为多普勒频率(,Doppler,frequency,)。使用,来,表示多普勒频率(,Doppler,frequency,)(单位是,Hz,),则,有,(,10-14,),?,由于电磁波的传播速度,c,远大于卫星相对海表面被探测点的,运动速度,w,,在公式(,10-14,)中,w,/c,1,,所以可忽略不,计。所以,(,10-15,
19、),?,式中,是雷达发射的电磁波波长;,是方位角(,azimuth,angle,),即雷达波束与卫星速度,w,之间的夹角;卫星相对,海面上探测点的运动速度,w,=,w,cos,,由图,10-4,显示的示,意图容易理解这个关系。这里,w,是卫星相对于地球的速度,,w,是卫星相对于海面上探测点的速度。,0,0,0,0,0,f,),c,w,1,(,c,w,2,f,w,c,w,2,f,),f,w,c,w,c,(,f,f,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,cos,w,2,w,2,f,c,w,2,0,?,公式(,10-15,)表示了多普勒频率,与方位角,之间的关系。使
20、用方位角,的微分,来表示多普勒频率的微分,,有,(,10-16,),?,如果我们使用,代表多普勒频率的分辨率,使用,代表方位角分辨率,,那么,方位角分辨率(,azimuth,angle,resolution,),可近似表示为,(,10-17,),?,根据离散数据的谱估计理论可知,频率分辨率由采样长度决定,频率分,辨率等于采样长度的倒数。因此,多普勒频率的分辨率,|,可以通过采,样时间长度(,sampling,period,),t,S,近似地表示为,(10-18),?,通过举例可以对公式(,10-18,)做出物理解释。例如,如果采样时间长度,t,S,=1,秒,即我们只在,1,秒钟的时间内采集了数
21、据,那么,可分辨波动的最,大周期是,1,秒钟;换句话说,可分辨波动的最小频率是,=,1,赫兹。因为,我们仅仅采集了,1,秒钟的数据,我们不可能分辨出更长周期的波动,譬如,周期为,10,秒的、频率为,1/10,赫兹的波动,因为采样时间长度确定了分辨,率。,?,?,?,?,?,?,sin,W,2,|,|,|,|,sin,w,2,?,?,?,?,?,?,?,s,t,1,|,|,?,?,?,?,将(,10-18,)代入到(,10-17,),我们获得,(10-19),?,使,用,X,D,=,wt,S,表,示,在,整,个,采,样,时,间,t,S,内,卫,星,移,动,的,距,离,,,则,方,位,角分,辨,率
22、,(,azimuth,angle,resolution,),变为,(,10-20,),?,在,推,导,的,最,后,一,步,,,我,们,获,得,了,合,成,孔,径,雷,达,的,方,位,分,辨,率,(,azimuth,resolution,),即,(10-21),?,式中,X,D,=,wt,S,表示在整个采样时间,t,S,卫星移动的距离。比较两个公式(,10-21,)和,(,10-26,),我们可以发现,2X,D,sin,和真实孔径,D,在各自公式中的作用相同,这等,同于通过合成孔径技术取得了一个比较大的天线孔径。合成孔径技术意味着依据多,普勒效应,采用“混频”技术产生多普勒频率,然后运用“低通滤
23、波”技术剔除随,之产生的高频成分而只保留多普勒频率成分。不但这些多普勒频率的电磁波携带着,地球表面粗糙度的信息,而且这些地球表面信息具有比传统雷达更高的空间分辨率。,所以,这种能够利用多普勒效应携带高分辨率地球表面信息的雷达被称为合成孔径,雷达,SAR,(,Synthetic-Aperture,Radar,)。,?,?,?,?,sin,2,s,wt,?,?,?,?,?,?,sin,X,2,D,?,?,?,?,sin,X,2,r,x,D,10.2.3,距离分辨率,(,Range Resolution,),?,图,10-6,显示了雷达的距离分辨率(,range resolution,)的推导示意图
24、。,如图所示,,S,是卫星,,是入射角,线段,SC,代表卫星与探测点之间的距离,(,range,),线段,AB,代表沿雷达波束在地面的投影方向上能够分辨的最,小距离,我们称之为距离分辨率(,range resolution,),并使用,y,表示,之。,?,根据直角三角形各边的关系,距离分辨率,y,与线段,EB,有关,即,(10-22),?,线段,EB,和卫星接收到的脉冲持续时间的关系是,(10-23),?,所以,距离分辨率,y,可以表示为,(10-24),?,式中,是入射角,,c,是光速。显然,距离分辨率,y,与脉冲持续时间,或者等价地,说脉冲宽度,r=c,成正比。脉冲持续时间,越短,脉冲宽度
25、,r,越窄,距离分辨率,y,越细。窄的脉冲宽度,r,是通过使用脉冲压缩技术实现的。距离分辨率,y,还与,入射角,成反比。入射角,越小,距离分辨率,y,越粗。为了提高距离分辨率,,必须侧视扫描,尽量保持一个较大的入射角。,?,为了保证返回的子波束有相遇和重叠的机会,当一个雷达波束脉冲的尾部到达,A,点开始返回时,它的前部必须已经从,B,点返回并且已经到达或超过,E,点。若线段,EB,的二倍长度小于或等于脉冲宽度,上述条件则得到满足。否则,如果线段,EB,的二倍长度大于脉冲宽度,那么在线段,AB,内各点返回的子波束不能相遇。子波,束相遇是干涉加强和布喇格共振的前提条件,故公式(,10-23,)需要
26、被满足。,?,?,?,?,sin,EB,AB,y,?,?,?,c,EB,2,?,?,?,?,sin,2,c,y,10.3,合成孔径雷达的应用,(,Application of,SAR,),10.3.1,一般介绍(,General Introduction,),10.3.2,海浪的方向谱(,Directional Spectrum of Ocean Waves,),10.3.3,海面风(,Sea Surface Wind,),10.3.4,内波(,Internal Waves,),10.3.1,一般介绍,(,General Introduction,),?,对于海洋遥感来说,海面的粗糙程度是影响
27、雷达波束后向散射的,主要因素。雷达所测量的海面粗糙程度是由几厘米到几十厘米的,表面张力波和短重力波引起的。合成孔径雷达(,SAR,)对海洋学,家感兴趣的任何海洋特征或现象(如风、流、海浪、锋面、海面,油膜、涡旋、内波和水下地形等)的成像能力取决于这些特征或,现象以各种不同方式改变海面粗糙度的程度。,?,这为合成孔径雷达(,SAR,)的海洋应用开辟了新的领域,同时也,促使人们对上述现象的成像机制进行广泛深入的研究。所有这些,努力使得合成孔径雷达(,SAR,)的海洋遥感成为卫星海洋学的一,个十分令人感兴趣的方向。合成孔径雷达(,SAR,)可以测量海浪,的方向谱、海面风场、内波,还可以监测海冰移动和
28、海面油膜。,以下阐述的是合成孔径雷达(,SAR,)在物理海洋研究方面的具体,应用。,图,10-7,显示了美国宇航局航天飞机(,space shuttle,)装载的,SIR-C/X-SAR,拍摄,的长城地域的图像。,10.3.2,海浪的方向谱,(,Directional Spectrum of,Ocean Waves,),?,图,10-8,显示了合成孔径雷达(,SAR,)观测到的方向谱,S,(,)的一个,例子,这里,代表海浪的波长,,代表某波浪分量的方向(例如以北向为,参照物)。,?,SAR,在海洋学中的主要应用之一就是对海浪的研究,合成孔径雷,达(,SAR,)能提供任何其它技术手段不能获得的关
29、于海浪场的空,间数据。毫无疑问,它能对海浪成像并给出符合实际的波长估算,值。然而,对于海浪是否能够被成像,什么方向,多长波长的海,浪适于合成孔径雷达(,SAR,)成像,图像中的海浪与实际海浪有,多少差别等问题的认识是不易通过现场观测来验证的,合成孔径,雷达(,SAR,)的海浪仿真遥感研究因此成为解决这一问题的重要,手段。,?,海浪的研究对海上经济和军事活动具有十分重要的意义。可以用,一个二维方向谱描述海浪,某时某地的海浪场的所有统计特征均,可以从海浪的方向谱获取。星载合成孔径雷达(,SAR,)能实现多,波段、多极化、多方位、多俯角观测海浪,进而提供大范围、高,精度的动态海浪场信息和二维海浪方向
30、谱数据。二维海浪谱的测,量资料有助于对海浪这种复杂的随机过程的内部物理结构和外在,的统计特性的全面研究,可以为港口、海岸工程以及海上石油平,台建设提供有用信息,例如波长、波高、波向等相关参数。,10.3.3,海面风,(,Sea Surface Wind,),?,海面风场是海洋和大气的重要动力要素,星载微波散射计是迄今为止最,主要的遥感测量全球海面风场的传感器,其风速风向测量精度分别达到,2m/s,和,200,,散射计遥感数据已广泛的应用于海面风场、海浪场、天气,预报以及海洋和大气相互作用研究等领域。,?,散射计测量的分辨率通常在,25km,50km,,不能满足某些需要高分辨率,风场数据的应用。
31、此外,散射计无法测量近岸几十公里以内的海面风场。,在近海(包括海湾、海峡、河口等)及岛屿和冰缘附近海域,风场在数,百米到数公里的空间尺度内就有较大变化,空间分辨率较低的散射计不,适用。,?,星载合成孔径雷达(,SAR,)则不同,它具有以很高的空间分辨率(数米,到数十米)测量海面风场的能力,特别适用于近海、岛屿和冰缘附近海,域海面风场以及局地风场的测量。欧洲的,Envisat,卫星将不再装载散射计,,其上的,SAR,将作为高分辨率散射计兼任海面风场测量之重任,更推动了,合成孔径雷达(,SAR,)海面风场的遥感研究。,?,作用在海面的风应力直接影响到大气与海洋环流以及海气之间的相互作,用,也是推算
32、风驱动海流和海面油污扩散的必要参数条件。随着遥感技,术的发展,利用星载合成孔径雷达(,SAR,)对海面风应力的动力特性进,行大范围、高空间分辨率测量已成为可能。,10.3.4,内波(,Internal Waves,),?,内波是一种海洋中尺度现象,对海洋工程、海洋军事和海洋科学都具有,重要意义。,?,由于内波发生的随机性,采用常规观测方法获取长时间大范围的内波观,测资料非常困难,因而星载合成孔径雷达(,SAR,)成为内波探测的重要,技术手段。实际上,合成孔径雷达(,SAR,)观测的具有明显图像特征的,海洋现象,除海浪外,最经常、最广泛呈现的现象就是内波。,?,自,70,年代末开始,美国的,Se
33、asat,、欧空局,ERS-1/2,和加拿大的,Radarsat,等卫星上的合成孔径雷达(,SAR,)已经获取了大量的内波图像,为内波,研究提供了丰富的资料。,?,经过多年的研究,人们对内波的,SAR,图像特征和内波的时空分布特征已,有较为充分的认识。如何从提取波长、波向等内波外在属性的研究中摆,脱出来,进而对内波发生深度以及内波振幅等内在特性进行定量获取,,是目前内波遥感研究尤为关注的问题。,图,10-9,:合成孔径雷达(,SAR,)在南中国海观测到的内波,?,现以南中国海的内波为例,阐述合成孔径雷达在观测海,洋内波方面的应用。图,10-9,显示了合成孔径雷达(,SAR,),在中国南海观测到
34、的内波。,?,南中国海是一个位于热带太平洋最西侧的半封闭的海盆,(,990E-1210E,,,00-230S,),如图所示,水体分别与东,海、太平洋、印度洋(通过台湾海峡)、巴士海峡、马,六甲海峡相连。海底地形的特征是在北面和南面各有一,个延伸的大陆架,在中心偏东的方向有一个很深的海沟,,其轴线为东北西南方向。该地区属明显的热带季风气,候,夏季(,6,、,7,、,8,月)盛行西南风,冬季(,12,、,1,、,2,月)盛行东北风。,?,从,Radarsat,以及欧洲遥感卫星,ERS-1,、,ERS-2,得到的合,成孔径雷达(,SAR,)资料,可以用来研究南海内波特征,,根据,SAR,图像产品,发
35、现在该地区存在向西传播的规则,的内波,尤其是从吕宋海峡向大陆架方向,内波最大波,长可以达到,200km,,振幅达到,100m,左右。这些波动是由,穿过吕宋海峡的黑潮的支流产生。假如内波是由半日潮,引起的话,那么其群速可以被估计。,?,海洋中一般存在两种互相对立的非线性内波类型:温跃层,抬升驱动的抬升波(,elevation waves,)和温跃层下潜驱动,的下潜波(,depression waves,)。,?,根据内波原理,海表混合层与海底混合层厚度的比值决定,了内波的类型。如果该比值大于,1,,那么抬升波就可能出,现,反之下潜波就可能出现。,?,在,SAR,的下潜波图像里,考虑到内波引起的垂直流动,图,像的一个亮带代表次表层水辐聚造成的粗糙表层水面,紧,接着的一个暗带代表次表层水辐散造成的光滑表层水面。,抬升波的图示意义则相反。从显示的,SAR,图像上来看,南,中国海存在的内波大部分属于下潜波,尤其是在夏季,这,个结果与内波原理一致,因为在夏季,海表混合层厚度小,于海底混合层厚度。在其他季节,如果风生混合层足够强,,在浅水区海表混合层厚度会大于海底混合层,这样就会出,现抬升波。宽刈幅的,SAR,,例如,ScanSAR,,能够观测到,由潮汐的周期运动引起的内波,这就为研究内波发展过程,提供了一个很好的工具。,第十章结束,
链接地址:https://www.31ppt.com/p-3999198.html