自动化专业毕业设计(论文)文献翻译全自动吸尘器核心控制电路设计.doc
《自动化专业毕业设计(论文)文献翻译全自动吸尘器核心控制电路设计.doc》由会员分享,可在线阅读,更多相关《自动化专业毕业设计(论文)文献翻译全自动吸尘器核心控制电路设计.doc(10页珍藏版)》请在三一办公上搜索。
1、毕业论文(文献翻译) 题 目_全自动吸尘器核心控制电路设计 学生姓名 指导教师 学 院 信息科学与工程学院 专业班级 自动化2007级 一个基于全景摄像机的智能吸尘系统摘 要:本文介绍了一种使用全景摄像机提供导航信息的智能吸尘系统,在系统设计中,改进了连续自适应均值移动算法,而且用到了积极构架的不同算法,基于目标探测,追踪,路线规划,能实现自动控制。进行了一系列的实验。相对于市场上的第一代智能吸尘器,本文介绍的系统得益于来自全景摄像头的反馈信息,这样会使系统即使在外界的干扰下清洁也更加高效。关键词:智能吸尘器,全景摄像机,改进的连续自适应均值移动算法,积极构架的不同算法1简介 当今市场上最具代
2、表性的智能吸尘器是伊莱克斯设计的,称为三叶虫。这种吸尘器使吸尘工作更加简便。但是,它们还是有一些缺点。由于采用了开环控制系统,第一代智能吸尘器工作起来比较盲目。它们只能依靠固定的预先设定的程序来移动和清洁,而不能根据不同的环境来调节移动的方案,使移动和清洁更加高效。从而第一代吸尘器总是存在低效率、低覆盖率的问题。这种问题在清洁较大的区域的时候显得更加的难以忍受。基于全景摄像机的智能吸尘器运用图像处理算法探测和追踪吸尘器,由此获得基于运用规划的导航信息。由于装备了实时闭环控制系统,获得了高效率的智能吸尘系统。本文的安排如下:第二部分介绍目标探测和追踪的算法,这个算法被考虑到我们应用程序的提高。第
3、三部分通常介绍了测试系统的设计,第4部分节目试验结果和一些分析;第五部分提供了一种结论。2 目标探测和追踪2.1 目标探测现在又许多关于目标探测的算法。考虑到计算效率,连续基于帧间差分运用到我们的系统。同时,当探测时目标被限制在一个区域内。为了使移动更加快速和高效,运用到了一种积极的方法.当需要执行目标检测,系统发出指令信号使吸尘器在一个小区域内移动,这为连续基于帧间差分算法检测目标提供了方便。2.2 目标追踪2.2.1 连续自适应均值移动算法目标追踪算法是我们系统的核心部分。根据实时的需求,这个算法本应该简单和快速。所以,连续自适应均值移动被选作原始的算法。运用均值漂移理论123,连续自适应
4、均值移动运用色调饱和价值(HSV)颜色系统在视频场景里跟踪被涂了色彩的物体。因为它的计算效率和效力,这种算法在大多数环境下工作良好。连续自适应均值移动算法的步骤如下4:1. 在跟踪窗口计算图像的一维色彩直方图。2. 根据直方图计算概率分布图。3. 使用均值漂移理论,在跟踪窗口计算对象的质心(一次或多次迭代)4. 转化跟踪窗口并根据均值漂移理论的计算结果调整窗口的大小。5. 重复第三步和第四步,直至收敛。 2.2.2 缺点原始的连续自适应均值移动算法有一些缺点。第一点,连续自适应均值移动均值漂移理论的核心是工作在概率分布空间,这就说明在追踪的时候它不能直接知道物体的颜色。考虑到初始追踪窗口和物体
5、不匹配的情况,例如:窗口中的像素点大多数都不是你想追踪的,但对于其他物体和或背景是有用的。原始的连续自适应均值移动算法仍然认为它的窗口包含了大多数的正确的对象,因为它只要面对概率分布。那么,在窗口上得到的主要质量的质心将不是那个你想要得到的对象的质心,但有一些出发到其他对象甚至背景。事情变得更糟的是,该算法在逐帧进行着,跟踪窗口根据质心信息移动和固定;那么,如果质心和这一帧的计算出的“正确的”质心有偏差,那么跟踪窗口在接下来的一帧不会向预期的正确的目标的质心移动,相反会远离它,这就会使下一帧的计算结果的偏差更大。结果,追踪到一个错误的目标或背景。如图1.1,1.2所示,连续自适应均值移动算法收
6、敛到蓝色的书上,而不是我们想要的红色吸尘器。 图1.1 一个分离窗口 图1.2 跟踪丢失第二个问题发生在跟踪的对象是与其他区域的形象类似的色相值。在这种情况下,连续自适应均值移动算法会扩大跟踪窗口来捕捉整个区域,因为连续自适应均值移动算法在进行迭代的时候有扩大跟踪区域的性质。它的初衷是为了方便地获得整个对象,但是这里却出现了问题。如果连接的区域比跟踪的目标大很多,跟踪窗口将会偏离正确的目标很厉害。连续自适应均值移动算法所计算出来的质心和区域相对于正确的目标有很大的误差,导致了跟踪失败。如图2.1,2.2所示,跟踪窗口被椅子和桌子干扰。 图2.1 正常跟踪 图2.1 跟踪被干扰第三个问题在理论上
7、和第二个问题相同,根据不同的形式和不同的解决方法,我们认为它为另一个不同的问题。它也发生在跟踪对象是与其他区域的图形类似的色相值。研究发现,在这种情况下,不仅是跟踪窗口将扩大到错误的区域正如前面提到的问题,而且跟踪窗口会完全分心到一个错误的区域而离开原始的目标。例如,我们跟踪的目标(取名为A,像图3.1,3.2中的浅红色的吸尘器)也许会在一个参考系里连接到另一个目标(取名为B,像图3.1,3.2中的黑色的袋子),几秒钟以后,A偏离了B。我们发现连续自适应均值移动算法会受到B的干扰,当A远离我们的实验区域:它从这里开始跟踪B而非A。2.2.3 改进基于均值漂移理论,结合应用运用了一些列的方法来解
8、决上述问题。第一个问题是收敛域问题。这个问题的关键是,对象区域在跟踪窗口的比例是多少的情况下,连续自适应均值移动算法的迭代能够收敛到正确的对象。例如,定义P为对象区域在跟踪窗口的比例。根据我们的实验,Gary R.Bradski的原始连续自适应均值移动算法能够覆盖到正确的目标当且仅当P大于85%。在许多应用程序里,如此严格的条件可能永远不能满足。为了解决这个问题,我们必须扩大收敛域。在我们的应用程序中,以前的HSV色彩模型就是用来做这个的。例如,在吸尘器跟踪中,根据先前的知识,目标的HSV色彩模型,能够描述如下:在这一区域的近似红色色调渠道,不太小中饱和价值,不太暗和太亮。根据这些模型得到的阈
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动化 专业 毕业设计 论文 文献 翻译 全自动 吸尘器 核心 控制电路 设计
链接地址:https://www.31ppt.com/p-3991720.html