联合站原油脱水监控系统设计毕业设计.doc
《联合站原油脱水监控系统设计毕业设计.doc》由会员分享,可在线阅读,更多相关《联合站原油脱水监控系统设计毕业设计.doc(65页珍藏版)》请在三一办公上搜索。
1、目录1绪论11.1联合站原油脱水监控系统的国内外现状及发展趋势11.2本设计目的和意义21.3本文研究内容32联合站原油脱水系统概述42.1联合站简介42.2联合站原油脱水工艺流程选择42.3联合站原油脱水工艺流程简介52.4联合站原油脱水的主要工艺参数指标62.5联合站原油脱水工艺参数控制72.6联合站原油脱水的控制流程图83联合站原油脱水DCS系统方案设计93.1监控方案选择93.2用PC 和PLC实现集散控制(DCS)的基本原理103.3基于PLC+PC组成的联合站原油脱水DCS系统方案设计114联合站原油脱水DCS系统实验室模拟设计134.1现场模拟信号的采集134.2控制层PLC模块
2、配置144.3监控系统工业网络架构设计155系统硬件选型175.1仪表选用175.1.2压力仪表的选用185.1.3油水界面仪表的选用195.1.4流量仪表的选用195.1.5含水分析仪表的选用205.1.6液位仪表的选用205.2阀门的选用225.2.1调节阀选用原理225.2.2调节阀流通能力的计算、公称直径及型号的选择236下位机PLC软件设计及编程256.1软件设计流程256.2 计算机和PLC通讯组态设计256.3下位机PLC梯形图编程设计276.3.1 创建工程276.3.2 配置I/O286.3.3 梯形图程序编写326.3.4 Tag(标签)326.4 控制网网络规划337力控
3、监控组态软件设计367.1 力控简介367.2制作工程画面367.3创建实时数据库397.4用OPC建立力控与罗克韦尔的通信397.5 建立动画连接437.6 创建报警、专家报表、趋势曲线448系统连线调试及运行478.1系统硬件连线478.2系统调试及运行499结论50谢辞51参考文献52附录一 控制流程图53附录二 流程图55附录三 数据采集物理端口分布57附录四 数据采集及报警程序581绪论1.1联合站原油脱水监控系统的国内外现状及发展趋势国外在联合站监控系统方面比我国发展的快速,早在上世纪50年代,美国就建成第一套自动化监控输送系统解决了原油的自动收集、处理、计量输送问题。60年代,A
4、cro油田公司就已经把PLC用于注水控制,并很快发展到报警、泵控等其它领域。随着监控与数据采集系统越来越多的应用于油田生产控制与管理中,它与油田开采中的处理设备上的检测仪表和控制设备直接连接,能够实时和不断的获取检测仪表所检测到的运行信息。国外有些油田还实现了注气、注水的优化控制。自从美国Honeywell公司于1975年成功的推出世界上第一套DCS以来,经历了20多年的时间,DCS已走向成熟。目前的DCS发展成为基于计算机技术(Computer)、控制技术(Control)、通信技术和图形技术及4C技术,通过通信网络将分布在工业现场(附近)的现场控制站、检测站和操作控制中心的操作管理站、控制
5、管理站及工程师站等联接起来,共同完成分散控制和集中操作、管理和综合控制系统。国外油田DCS的应用已经开始采用一些先进控制策略。如HONEYWELL公司的性液位控制,可以更好地适应进液的波动。美国通控公司的无模型控制器可以适合滞后、时变的温度控制。HONEYWELL公司的气举优化和各种多变量控制、适应性模糊控制、神经网络控制也在油气集输处理站的DCS上运行,实现了部分生产过优化运行。目前国外已经将自动化技术提升到对原油的生产、储运、销售等环节进行全面监控的现代化管理水平的高度。英国石油公司建立的自动化监控系统可以根据地质情况自动控制产量。美国油田甚至将销售也考虑在自动化管理系统中。我国大部分的油
6、田采油厂联合站是在20世纪70年代建立起来的,目前的联合站监控系统主要分为人工监测控制、常规仪表自动监测控制、计算机监测控制三种方法。而我国很多地方依然停留在人工监测控制阶段而常规仪表组成的控制系统在处理复杂控制系统、集中监控系统和控制精度等方面具有局限性。上世纪九十年代,计算机控制开始应用于联合站生产过程,尤其是西部塔里木、吐哈、准格尔三大盆地的开发和建设,油田生产过程中的自动控制和管理的到了迅速的发展。1992年5月,鄯善油田就使308口油水井、19座计量站全部实现了由单井、单个装置,单站自动化向全油田,全线自动化的转变。随着油田开采的深入,油田已经进入到高含水及日产量不稳定的阶段,因此对
7、油田的自动化水平要求也越来越高,系统的控制策略一步适合当前中转站来液量大且波动大的实际情况,监控软件中的先进控制方法以及软硬件交互的开放性应用也不够。随着DCS向计算机网络控制发展,集输系统生产过程不仅局限于联合站范围内的操作和控制,还向过程控制系统和信息管理系统紧密结合方向发展,即控制和管理一体化。因此,联合站采用DCS是最佳选择,目前绝大数联合站采用的计算机监控系统是DCS。 1.2本设计目的和意义在开采原油时,我国的很多油田都是中后期开采,油田由于注水所开发出的原油含有较多的水分,目前一般为5080,有的甚至高达90,因此需要将原油中所含的水用各种方法分离出来。联合站原油脱水的监控系统首
8、先要保证联合站内的各个工艺装置工作正常,外还要设法保持工况的相对稳定,增加脱水转油的效率。如果脱水不彻底,不仅采来的油得不到利用产生浪费,而且会加重后面污水处理的负担。另外外输站的计量(流量与含水率)也因直接与采油厂的效益相关,所以也很重要。目前,大多采用人工定时采样测含水,容易造成漏洞,引致外输的实际油质与测量值不同,引起损失和纠纷。为了实现联合站原油脱水工艺流程自动监控,减少不必要的损失,集散控制系统就必不可少,测控点数多、测控精度高、测控速度快的工业现场, 其特点是分散控制和集中监视, 具有组网通信能力、测控功能强、运行可靠、易于扩展、组态方便、操作维护简便。系统完全可以胜任或多回路调节
9、器的工作, 它作为一个结点机使用是理想的。使用DCS 系统对生产过程进行控制, 实现了整体化、智能化、网络化、标准化的要求。系统的一切管理在控制中心即可完成, 为实现安全稳定生产, 减少设备建设维护费用, 提供了强有力的手段。因此,这就迫切要求对联合站进行自动化改造,实行集散控制系统的监控与管理。从而可以自动采集并监测生产过程的各个参数,并进行优化处理,实现节能降耗,对建成环保、节能、运行效率高、自动化管理水平高的智能化、数字化的联合站有着重要意义,它同时也是数字化油田建设的重要组成部分。1.3本文研究内容本文主要研究了联合站原油脱水工艺流程自动化监控系统方案设计。设计采用DCS系统为联合站原
10、油集输提供自动化监控与历史数据记录。设计具体内容如下: 1、确定工艺流程控制方案及模型;2、系统构成方案; 3、系统配置选型;4、仪表量程等参数的计算及仪表的选型;5、阀门流通能力的计算、公称直径的选择及阀的选型;6、罗克韦尔PLC编程;7、监控系统组态软件的编程,硬件模拟,系统调试。2联合站原油脱水系统概述2.1联合站简介油田是由油井、水井、计量间、配水间、转油站、联合站组成的一个油气水处理的综合系统,而联合站又是该系统最重要的组成部分。联合站是对各转油站来原油进行集中处理的场所,它主要包括对含水原油自然沉降系统(一段脱水)、电脱水系统(二段脱水)、污水处理系统、成品油外输系统、污水回注系统
11、。其工艺流程如图2.1所示。各系统之间相互串联,互相影响、互相关联,是一个复杂的生产过程。而联合站中最重要的就是原油集输系统。油气集输指的是将油田生产的含水原油和伴生气收集起来,进行处理并输送出去的过程,主要内容有油气的收集与分离、原油脱水(包括含水原油自然沉降脱水系统和电脱水系统)、原油处理、油气计量、天然气净化及污水处理等。图2.1 联合站流程简图2.2联合站原油脱水工艺流程选择联合站集输系统是实现油水分离的重要环节,原油的油水分离过程有自然沉水、化学脱水、机械过滤脱水、电脱水等多种方法。目前我国各油田普遍采用的自然沉降脱水、电脱水、电化学联合脱水等方法,采用脱水流程主要有两种,即两段式脱
12、水流程和三段式脱水流程。(1)两段式脱水流程联合站两段式集输系统主要包括两个子系统:自然沉降脱水系统(一段脱水系统,电脱水系统(二段脱水系统)。(2)三段式集输系统三段式集输系统与两段式集输系统工艺原理相似,主要的区别在于中转站的来油首先进入游离水脱除器,进行沉降脱水,脱水至含水70%左右,然后进入压力沉降罐,进行压力沉降脱水,脱水至30%左右,再进入电脱水器进行电脱水,经电脱水后,成为净化原油。所以三段式集输系统包括三个子系统:自然沉降脱水系统、压力沉降系统、电脱水系统。这种集输系统虽流程复杂、设备较多、能耗较高,但是脱水效果较好。油田只有极少的一部分联合站采用此种集输系统进行原油脱水。目前
13、,油田绝大多数联合站都采用两段式脱水集输系统。该系统简单、节省设备、能耗低、脱水效果较好。本设计选用第一种工艺流程。 2.3联合站原油脱水工艺流程简介原油脱水工艺流程如图2.2所示。图2.2 联合站原油脱水艺流程图具体的流程为:来自中转站的高含水原油进入联合站后,首先进入游离水脱除器,在破乳剂的化学作用和重力沉降作用下,经合理控制,分离出大部分游离水,高含水原油变成含水在20%30%左右的中含水原油。游离水脱除器的运行控制非常重要,要求在容器中部安装油水界面检测仪表,适时检测油水界面的变化,并通过控制容器下端放水出口的调节阀开度调整油水界面,使油水界面保持在一定范围内,以保证油出口含水和水出口
14、含油不超标。另外,多台游离水脱除器的出油汇到一条汇管上,要求在汇管上安装压力检测仪表,适时检测汇管压力的变化,并通过控制安装在汇管上的调节阀开度调整汇管压力稳定在0.24MPa,同时还要实现当压力超高时,快速泄压连锁保护功能。游离水脱除器的放水汇到一条汇管上,靠自压进入污水沉降罐游离水出口原油进入脱水加热炉,加热升温至5060,加热后的含水原油在输送管道中与一定数量的破乳剂混合,进入符合电脱水器进行油水分离。原油在电脱水器内在电场力和化学破乳剂的共同作用下,进行油水的最终分离,经过合理控制电场强度和脱水器的油水界面,使电脱水后的原油含水达到0.5%以下,从而得到满足要求的净化原油。电脱水器的控
15、制原理和游离水脱除器相同。脱出的污水进入污水沉降罐,进行污水处理。脱水后的净化原油进入净化油缓冲罐,再经过外输泵外输。2.4联合站原油脱水的主要工艺参数指标根据联合站原油两段式脱水流程工艺要求,其主要工艺参数指标如下:1、进站原油含水率80%;2、游离水除脱器油水界面高度为2.53.5m;3、游离水除脱器油出口管压力0.20.4Mpa;4、游离水除脱器污水排放流量310315 m3/h;5、加热炉温度65;6、原油出口温度5060;7、进入电脱水器原油含水率20%;8、电脱水器压力0.210.41Mpa;9、电脱水器油水界面高度2.33.2m;10、电脱水器污水流量2022 m3/h;11、外
16、输油流量8085 m3/h;12、净化油缓冲罐液位67m;13、事故罐液位020m; 14、外输油含水率0.5%。2.5联合站原油脱水工艺参数控制(1)游离水除脱器油水界面高度的控制和调整控制范围:使游离水除脱器保持在2.53.5m。控制目标:正常波动范围为01m。控制方式:调节游离水脱除器放水阀的开度,改变脱除器放水水量来控制油水界面高度。(2)游离水除脱器压力的控制和调整 控制范围:使游离水除脱器压力保持在0.20.4MPa。控制目标:游离水除脱器压力波动范围为0.2 MPa。控制方式:调节游离水脱除器出油阀门的开度,改变出油管道的流量用以控制压力。(3)加热炉油出口温度的控制和调整控制范
17、围:加热炉油出口温度为5060。控制目标:加热炉温度5060。相关参数:进出油量的波动、燃料量的变化。控制方式:通过控制送入加热炉燃油量来控制加热炉出口原油温度。(4)电脱水器油水界面高度的控制和调整控制范围:使电脱水器油水界面高度保持在2.3m3.2m。控制目标:正常波动范围为00.8m。控制方式:调节电脱水器放水阀的开度,改变电脱水器放水量来控制油水界面。(5)电脱水器压力控制和调整控制范围:使电脱水器压力保持在0.210.41MPa。控制目标:电脱水器压力波动范围为00.2MPa。控制方式:调节电脱水器出油阀门的开度,改变出油管道的流量用以控制压力。(6)净化油缓冲罐液位的控制和调整控制
18、范围:使净化油缓冲罐液位保持在67m。控制目标:净化油缓冲罐液位波动020mm。相关参数:进油量、外输油量。控制方式:通过控制外输油量来控制净化油缓冲罐液位2.6联合站原油脱水的控制流程图在控制方案确定后,根据工艺设计联合站原油脱水控制流程图,按其流程顺序标注出相应的测量点、控制点、控制系统及自动信号与联锁保护系统等的图形,即工艺管道与控制流程图(简称PID图)。参见附录一控制流程图。3联合站原油脱水DCS系统方案设计3.1监控方案选择(一) 基于DCS的联合站原油脱水监控系统集散控制系统(Distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、
19、管理和分散控制的集中分散控制系统,简称DCS系统。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。DCS系统在现代化生产过程控制中起着重要的作用,利用DCS可以完全实现对联合站脱水系统的数据采集和监控,历史数据保存,使系统处于优化运行。图3.1 DCS结构示意图(二)基于SCADA的联合站原油脱水监控系统监督控制与数据采集(Supe
20、rvisory Control And Data Acquisition,简称SCADA)系统,是由调度中心通过数据通信系统对远程站点的运行设备进行监视和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等功能的分散型综合控制系统。控制层次通常分为三级:控制中心级、站控级及设备控制级,在一些大型系统中还设有分控制中心这一级。 这种结构体现了集中管理、分散控制的现代大系统控制原则,特别适用于油气长输管道这种分散性大系统的运行管理和控制。方案可行性论证: DCS有以下优点:采用分级递阶结构(一般为四级,应用:过程控制,优化控制,自适应控制,工厂管理);采用微机智能化技术;采用局部网络通
21、信技术;丰富的功能软件包(应用程序模块化); 强有力的人机接口功能;采用高可靠性(硬件工艺结构可靠,冗余技术,容错技术)。同时,联合站装置比较集中,适于采用DCS进行控制和管理,而SCADA系统适用于油气长输管道这种分散性大系统的运行管理和控制。所以本设计采用DCS对联合站进行控制和管理。综上所述可以发现,DCS符合在油田联合站的工作情况,也更便于实现油田一体化,提高了工作的安全可靠性。故采用DCS作为监控系统来实现联合站数据采集及控制。3.2用PC 和PLC实现集散控制(DCS)的基本原理集散控制的基本思想是集中管理,分散控制。即:将流程工业的自动控制过程与操作管理人员对自动控制过程的管理过
22、程相对分离;流程工业的自动控制过程由各控制站相对独立地自动完成,而操作人员对自动控制过程的管理则由中央控制室的操作站来完成。中央操作站与各现场控制站一方面各自相对独立地运行,从而将各种故障限制在局部范围内,极大地提高了自动控制系统总体的安全性和可靠性;另一方面又相互进行实时数据通讯和信息交换,实现了操作人员在中央控制室的操作站对整个自动控制过程进行管理和调整。 现场控制站的主要任务是实现对生产过程的自动控制,因此它必需要能够自动采集全厂的各种工艺参数(如各种工艺介质的温度、压力、流量、粘度、组分,物位高度等)以及设备的运行状态(如阀门的开度、机泵的开停、设备震动、机械位移)等生产信息,然后按照
23、事先编好的控制程序进行大量的数值计算,最后输出420mA标准模拟信号(或ON/OFF数字信号)去驱动各种阀门、电机等执行机构,调节各种工艺参数,实现生产过程的自动控制;另外还要与操作站进行实时通讯 ,将采集到的各种生产信息传送到操作站供操作人员使用,同时接收操作人员通过操作站发出的各种指令实时调整自动控制方案、优化生产过程。因此它还需要具有标准化的通讯接口。目前的各种PLC均具有这样的功能,而且其容量弹性大,扩充方便,控制方案的组态简单易学,性能价格比优越,因此是中小型DCS的操作站的理想选择。 中央控制室的操作站实际上是一个人机界面,一方面把控制站采集的各种生产信息进行加工处理,然后以操作人
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 联合 原油 脱水 监控 系统 设计 毕业设计
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3991685.html