矩阵分解及应用毕业论文.doc
《矩阵分解及应用毕业论文.doc》由会员分享,可在线阅读,更多相关《矩阵分解及应用毕业论文.doc(73页珍藏版)》请在三一办公上搜索。
1、引言数学是人类历史中发展最早,也是发展最为庞大的基础学科。许多人说数学是万理之源,因为许多学科的研究都是以数学做为基础,有了数学的夯实基础,人类才铸就起了众多学科的高楼大厦,所以数学的研究和发展一直在不断的发展壮大。在数学中有一支耀眼的分支,那就是矩阵。在古今矩阵的研究发展长河中产生了许多闪耀星河的大家。英国数学大家詹姆斯约瑟夫西尔维斯特 ,一个数学狂人,正是他的孜孜不倦的研究使得矩阵理论正式被确立并开启了矩阵发展的快速发展通道。凯莱和西尔维斯特是非常要好的朋友,他也是一位非常伟大的数学大师,正是他们伟大的友谊,加上两人的齐心协力最后他们共同发展了行列式和矩阵的理论。后来高斯在矩阵方面的研究取
2、得重要的成就,尤其是高斯消去法的确立,加速了矩阵理论的完善和发展。而在我国,矩阵的概念古已有之。从最早的数学大家刘徽开始我们古代数学大家都已或多或少的研究了矩阵。尤其在数学大家刘徽写的九章算术中,它最早提出了矩阵的类似定义。而且是将矩阵的类似定义用在了解决遍乘直除问题里了。这已经开始孕育出了最早的矩阵形式。 随着时间转移,矩阵的理论不断的完善,在对于那些大型矩阵的计算中如果用基本方法显得过于繁重,于是发展出了矩阵的分解,随着对矩阵分解的不断研究完善,矩阵分解方法和理论也日趋成熟 矩阵经常被当做是数学工具,因为在数学问题中要经常用上矩阵的知识。矩阵是一个表格,要掌握其运算法则,作为表格的运算与数
3、的运算既有联系又有差别,在所有矩阵的运算方法中,矩阵的分解是他们中一种最重要并且也是应用最广泛。矩阵分解主要是对高斯消去法的延续和拓展。在一些大型的矩阵计算中,其计算量大,化简繁杂,使得计算非常复杂。如果运用矩阵的分解,将那些大型矩阵分解成简单的矩阵的乘积形式,则可大大降低计算的难度以及计算量。这就是矩阵分解的主要目的。而且对于矩阵的秩的问题,特征值的问题,行列式的问题等等,通过矩阵的分解后都可以清楚明晰的反应出来。就连矩阵的奇异性也显而易见。在另一方面,对于哪些大型的数值计算问题,矩阵的分解方式以及分解过程也可以作为其计算的理论依据。第一章 矩阵的基本知识储备 矩阵的知识体系涉及的知识多而且
4、琐碎,所以先对其整体知识性构建基本的知识体系。即首先对矩阵的基本知识进行储备。所以本文将首先进行基本知识的总结和概述。1.1矩阵的基本知识定义:由个数()排成的行列的数表:上面式子也可写为:这个所述的个数也称之为矩阵A的元素,即简称它是元。实矩阵:指的是元素全是实数的矩阵。同理知道复矩阵即为元素是复数的矩阵。下面所述几种比较特殊的矩阵:(1) 方阵指的是行数和列数相等的矩阵。简记。(2) 行向量:。(3) 列向量:。(4) 对角矩阵(对角阵)。把它记做是:。(5) 元素全是0的矩阵叫做零矩阵。(6) 对于主对线的左下方,如果其元素都是0,则称它是上三角矩阵,否则称作是下三角矩阵。例如:(8)对
5、角矩阵中元素都为1的对角阵叫做是对角方阵。1.2:可逆矩阵(非奇异方阵)的定义可逆矩阵的定义和线性代数是紧密联系在一起的,即给定一个方阵A,它是 n 阶方阵,如果存在和A同为n 阶的方阵B, 使得(或中总有一个成立),E指的是阶数为n的单位矩阵,那么A就是可逆矩阵,B则叫做A的逆矩阵,即。方阵A的逆矩阵如果是存在的话,把矩阵A 称作是非奇异方阵或者是可逆方阵也可以是满秩矩阵。如果,那么矩阵A通常被称作是奇异矩阵(降秩矩阵)。对于矩阵A,如果他不是满秩的矩阵,也就是它的行列式的值是不等于零的,即满足条件:A0。那么A则必定是可逆的。上面叙述的性质也是我们在学习中经常用于判断矩阵可逆的充分必要的条
6、件。而对于下面叙述的条件是与上述判断矩阵可逆的条件是等价的: (1) 矩阵 A 是可逆的的矩阵。 (2) A 的行列式不为零。 (3) A 的秩等于 n(即矩阵A是 满秩矩阵)。 (4) A等价于单位矩阵E (5) A仅仅用初等行变换就可以化成单位矩阵E1.3:共轭转置的定义。其中表示矩阵i行j列上的元素,表示标量的复共轭。这一定义也可以写作:,其中是矩阵A的转置,表示对矩阵A中的元素取复共轭()。通常情况下我们用记号或来表示矩阵A的共轭转置。对于,在某种情况下极易混淆,就是在特定情况下表示只对矩阵元素取复共轭,而对矩阵做转置,概念不能混淆。比如,对于矩阵A假如等于如下:那么由上面所述的性质定
7、理可以得到矩阵A的共轭转置:假如矩阵A的元素都是实数,即矩阵A是实矩阵,那么共轭转置矩阵与矩阵A的转置矩阵是相等的。复数的推广中经常用到的是复值方块矩阵,而共轭转置是对共轭复数的推广应用。共轭矩阵的基本性质:(1) 如果矩阵A和矩阵B的维数相等,则:。(2),并且其中r是复数,为r的复共轭。(3)对于m行n列的矩阵A以及n行p列矩阵的矩阵B,有。(4) (5)假如A是方阵,那么有,并且有,如果矩阵A可逆,则仅当在矩阵A的共轭转置是可逆矩阵,且满足,.对于共轭矩阵它的特征值相较于矩阵A的特征值,它是矩阵A特征值的复共轭。1.4:酉矩阵的定义:n阶复方阵U,当矩阵U的n个列向量同时也是矩阵U空间的
8、标准正交基的时候,我们把矩阵U叫做是酉矩阵。酉矩阵的判断方法:对于那些方阵本身即U矩阵乘以方阵的共扼转置即U的共轭转置最后的结果是单位阵,那么就可以判定矩阵U肯定是酉矩阵。换一种表达就是对于酉矩阵有:其逆矩阵和伴随矩阵相等。并且对于酉等价指的是从标准的正交基变换到标准正交基的一种特殊的基变换的方式。 也可以用如下定义来描述酉矩阵:即如果一个复矩阵U它是n行n列的,并且同时满足条件:。而对于,它是一个n阶的单位矩阵,对于矩阵,它是U的共轭转置矩阵,这也就是矩阵U的酉矩阵,如果对于矩阵U,其他的共轭转置是原来矩阵U的逆矩阵时,即时.在酉矩阵中有一种特殊情况:即对于酉矩阵,如果它的所有元素都是实数的
9、话,可以判定它为正交矩阵。且其和正交矩阵G有着差不多的性质:即他们不管怎么变化都不会改变实向量内积,即:。 同时,酉矩阵U也是不会改变两个复向量的内积的:,下列条件和U是n阶方阵是等价的:(1)对于U是酉矩阵的话,那么也一定是酉矩阵。(2)对于U矩阵,他的列向量同时也构成了上的一组正交基在它所对应的内积空间下。同时也可以推断出它的行向量也构成一组正交基在内积空间下。酉矩阵U的性质:(1) U是可逆矩阵;(2) 矩阵U的逆矩阵等于矩阵U的转置矩阵,同时有是酉矩阵;(3) ;(4) ;第二章 矩阵的三角分解 矩阵的三角分解是所有矩阵分解知识中第一个被提出来并被完善的。矩阵的三角分解在矩阵的分解中有
10、着基础的作用。最早的时候是高斯在研究矩阵消去的时候发现了三角法,后面在弗罗博扭波斯的大力研究发展下,矩阵的三角分解取得了极大的突破。本章节主要对矩阵的三角分解进行详细的探讨。值得一提的是在19世纪,西方数学进入中国后,许多中国的有识之士结合中国数学发展和西方数学知识,为整个数学知识的推动起了很大的作用。2.1:对于高斯消去法的方法和它的计算思路的初步探讨例1,解方程组:解:首先我们先写出该方程组的矩阵形式:,并且有:第一步,那就是消元的过程:对增广矩阵进行消元:即得方程组:第二步,回代过程:上面所用的方法是高斯消去法中最基本的一种方法。2.2:高斯消去法的基本计算过程和它的计算公式设线性方程组
11、: 方程组可以写成下面的矩阵形式:同时也把上面式子简记为初始的方程组写作:写作(1) 对式子的第一次消元(k=1),先消去2到n这(n-1)个方程组中的,如果设要做到:第i个方程-(减去)第1个方程这时而且右端和它的系数有:(2)第k次消元(.,)假设已完成,即上述消元从第一步到第k步计算都以完成。与其相等价的方程组我们已经算好:简记上式为:如果设第i个方程-(减去)第k个方程则得到:对于和,下面的公式是对他们的元素的:(3)延续上述计算,且使一直到第s步消元计算结束。得到了:即是这个方程组是与原来的方程组等价的。而对于与原来方程组等价的方程组里面有:对于,他的形状是上梯形的。要想得到与原来的
12、方程组等价的方程组就得只在当m=n的条件下,也就有如下:由上式约化的过程称为消元过程。如果它是非奇异的矩阵,同时是成立的。则在求解下式的时候就可以得到求解公式是:求解过程称做回代过程。有了上面的对基本的知识的理解和储备,那么我们就可以轻松的理解下面的这些基本定理:定理1:设线性方程组A是n阶实矩阵,即:,如果有则运用高斯消去法可以将线性方程组转化成与三角形方程组等价,计算步骤如下:a) 消去计算(k=1,2,.,n-1).b)回代计算: 前提:矩阵A它是非奇异的矩阵,同时有:我们可以运用高斯消去的方法(也就是做两行进行交换的初等变换)把原始的方程组化简成诸如上述形式的式子。这样对于下面的定理就
13、可以很轻松的理解:定理2:因为对于系数矩阵A,它的各个阶的顺序主子式都是不是0的,所以高斯消去法才可以运算到底。高斯消去法能进行到底,就是因为上述定理,这也是充分必要条件。定理2也表明:若阶顺序主子式不等于零则需满足。他们相互之间同时也是充分必要的条件。但是通过这个我们也就可以看出高斯顺序消元法的一些不足之处,最为突出的是在条件时,这时的方程组不一定是没有解的,这时候运用高斯顺序消元法的话,它的首要条件就没有满足,那么它的第一步运算也就不能够进行下去可。这时就可以用到列主元消元法。下面的这种表达也归为是高斯消去法的一种方式,即:形如 = 的矩阵称为初等下三角矩阵,并且有:= 并且对于主对角线元
14、素,他们全都是 1 ,而剩余的元素就都是0。例如当k=1时,有=,=,=其中: =- 容易看出 其中: 且 特别的那么有对应于的矩阵是单位的下三角矩阵。一般地,设则有 ,这样的表达方式就是高斯消元的过程的矩阵形式。2.3:方法细述定义:三角分解指的是那些将正方阵分解成由上三角阵和下三角阵组成的分解方法。同时这样的分解方法称为LU分解法。在较大的矩阵行列式值的计算过程中,进行直接的计算非常繁琐,而进行矩阵的分解可以大大简化运算,所以三角分解方法主要用于简化计算。矩阵三角分解是建立在高斯消去法上,高斯消去法是三角分解的基础。所以矩阵符合三角分解的条件和满足高斯消去法的条件一致,即矩阵A需满足其前n
15、-1阶顺序主子式不等于零,上面的条件也经常被用于判断矩阵A是否是可以进行三角分解的前提条件,如果不能够满足这个条件的话,那么再怎么进行分那都是没有任何的意义。在矩阵的三角分解法中,分解方法并不唯一,而是不同情况有着不同的分解法。但在某些特定的条件下,的分解就只有唯一的存在,D指的是一个对角矩阵。Doolittle分解、Crout分解以及Cholesky分解是矩阵三角分解众多方法中最常用的三种。且对于这三种三角分解,他们在进行三角分解时均要使用待定系数法。且在计算阶数较大矩阵时,上述三种方法各有优点,都可使算法简单方便。(1)Doolittle分解:任意方阵A,进行初等变换化为两三角阵乘积。即进
16、行:PA-LU(P:置换阵,L:下三角阵,U:上三角阵)。最后得到,这就是Doolittle分解。对于Doolittle分解有:假设如果A的前n-1阶的顺序主子式都不是等于0的,那么Doolittle分解就可以实现,也就是,在这种条件下三角分解式是唯一的。 (2)Crout分解:在Doolittle分解中有,如果把Doolittle分解中L换成下三角矩阵,U换成是单位上三角矩阵.此时分解依然是成立的。则此时的这种分解称为Crout分解。如果n阶方阵A,它的k阶主子式均不等于0,(k=1,2,.,),则矩阵A的Doolittle分解和Crout分解都是唯一存在。 定义:对于式子,如果A满足并且假
17、设存在这样的下三角矩阵:和上三角矩阵, 那么称是可以进行三角分解。三角分解有一些基本的定理:1)矩阵A可进行三角分解的条件:对于矩阵A,其前r个顺序主子式全都都不等于零,同时A满足条件,即:,。2) 假设有m行n列的矩阵A()。满足:即前n-1阶顺序主子值不等于0。同时满足:L单位下三角阵,U单位上三角阵,D对角矩阵,即,且满足那么A就可以唯一分解为,这也是矩阵A可以进行唯一分解的充要条件。例:求矩阵的LU分解和LDU分解解:因为所以A有唯一的LU分解,令:则有:再令故有则有:由此知道于是的LDU分解为:从而可得到A的LU分解为:2.4:矩阵的三角分解的计算方法以及其格式的初步探讨(1)直接计
18、算法:直接计算法是高斯消去法的一种延伸,它是三角分解最基本的方法。直接计算法相比高斯消去法,其本质基本未变,就是将原方程组化成由一个或者是由若干个三角形方程组组成的过程。直接计算三角分解的方法并不唯一,这需要我们根据实际的情况选用合适的计算方法。对于方程组,首先它是非线性方程组。对于此方程组有:矩阵A是此方程组的系数矩阵,X是此方程组中的未知的向量,b是方程组中的常数项。在此线性方程组中,若其系数矩阵A可分解由两个三形矩阵L和的构成形式,即,那么有:。这样的分解方法就是我们经常说的矩阵的直接三角形分解法。 a)Doolittle分解法(直接三角分解).在实际计算中,用最基本的直接计算法进行三角
19、分解也是很繁琐的,如果运用LU分解的紧凑格式,则可以大大的降低计算复杂度。所以下面将讨论LU分解的紧凑格式。首先:对于下面的式子,总满足:,并且矩阵它是能够进行三角分解。 由:方法,有:=,则有由上我们不难得出如下紧凑型计算公式对于矩阵:由此类推,就可得出Crout分解的紧凑计算格式是:例:上面已经给出了Doolittle方法,下面用Doolittle方法实际解下列方程组:解:)4,0,0,0(),0,0,0()9,1,0,0(),1,0,0()112,113,0,0(),0,0()116,113,1,0(),1,0()5.8,12,11,0(),0(441114334334232242322
20、-=-=-=-=-=-=-=-=-uuulalulauluulluuurrrkkrikirirrkkjrkrjrjTTT解得:解得: 从上可知:一般的直接计算法计算过程特别繁琐。如果我们使用上面所述的Doolittle紧凑分解法则可大大减小运算。过程如下:所以有:例题:求矩阵=的Crout分解解:首先算出: 因此矩阵的Crout分解如下=通过上面的例子我们就可以总结出矩阵直接三角分解法的解题步骤依次是:(1) 第一步写出原来方程组的系数矩阵A,然后根据三角分解公式分别求出U矩阵的行元素和L矩阵的列元素。(2) 进行交叉计算(就是指一行一列的进行交叉计算),同时也要把计算得到的值存放到矩阵A相对
21、应的位置,最后要得到完整的U,L矩阵。(3) 最后一步就是计算列向量y,然后就是得到X,这也就是方程组的解。2.5:列主元法 列主元三角分解法:在直接三角法中,在一些情况下会出现一些误差,所以这时我们就要选择列主元三角分解法。比如在矩阵的直接三角分解中,当的时候我们不难看出计算会出现中继,而当的绝对值非常小时,照搬分解公式进行计算有可能会引起舍入误差的累计。但是如果矩阵A是非奇异的,那么我们就可以通过交换A的行实现矩阵PA的LU分解。因此列主元分解法的目标与高斯列主元消去法的原理相同,为了消除因数过小而产生的误差扩散。列主元三角分解法的解题步骤:1)先列出增广矩阵,然后对增广矩阵求出其第一列的
22、主元在计算中,为了获得矩阵主元,需进行换行运算,主要是对矩阵U的第一行元素与矩阵L的第一列元素。2)重复上述的行列交换,并进行交叉计算,而对于得到的计算值,我们要将其存放到矩阵A的对应位置。到第K步的时候:需要求出主元并且交换行3)为了可以得带整个U,L矩阵,我们要求出矩阵U第k行的元素以及矩阵L第k列的元素。算完后算出列向量y,最后就可以得到X,也就是方程组解x。2.6常用Cholesky分解(对称正定三角矩阵的分解)定义:在学习工科时,尤其是工程方面的知识时,经常会碰到一些工程计算的实际问题,而我们在解决许多工程计算问题时,尤其是哪些复杂的工程计算问题。通常都有用到线性方程方面的知识。在线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 分解 应用 毕业论文
链接地址:https://www.31ppt.com/p-3989938.html