人教版九年级上册-第22章-二次函数图像与性质知识点题型总结.doc
《人教版九年级上册-第22章-二次函数图像与性质知识点题型总结.doc》由会员分享,可在线阅读,更多相关《人教版九年级上册-第22章-二次函数图像与性质知识点题型总结.doc(7页珍藏版)》请在三一办公上搜索。
1、二次函数图像及性质【二次函数的定义】一般地,形如(为常数,)的函数称为的二次函数,其中为自变量,为因变量,、分别为二次函数的二次项、一次项和常数项系数注意:和一元二次方程类似,二次项系数,而、可以为零二次函数的自变量的取值范围是全体实数【二次函数的图象】1二次函数图象与系数的关系(1)决定抛物线的开口方向当时,抛物线开口向上;当时,抛物线开口向下反之亦然决定抛物线的开口大小:越大,抛物线开口越小;越小,抛物线开口越大温馨提示:几条抛物线的解析式中,若相等,则其形状相同,即若相等,则开口及形状相同,若互为相反数,则形状相同、开口相反(2)和共同决定抛物线对称轴的位置(抛物线的对称轴:)当时,抛物
2、线的对称轴为轴;当、同号时,对称轴在轴的左侧;当、异号时,对称轴在轴的右侧(3)的大小决定抛物线与轴交点的位置(抛物线与轴的交点坐标为)当时,抛物线与轴的交点为原点;当时,交点在轴的正半轴; 当时,交点在轴的负半轴2.二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点3.点的坐标设法 一次函数()图像上的任意点可设为.其中时
3、,该点为直线与轴交点. 二次函数()图像上的任意一点可设为.时,该点为抛物线与轴交点,当时,该点为抛物线顶点 点关于的对称点为4.二次函数的图象信息 根据抛物线的开口方向判断的正负性 根据抛物线的对称轴判断的大小 根据抛物线与轴的交点,判断的大小 根据抛物线与轴有无交点,判断的正负性 根据抛物线所经过的已知坐标的点,可得到关于的等式 根据抛物线的顶点,判断的大小5.二次函数的图象的平移【二次函数的图象及性质】1 二次函数的性质:抛物线的顶点是坐标原点(0,0),对称轴是( 轴)函数的图像与的符号关系当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点;的符号开口方向顶点坐标对称轴
4、性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值2二次函数的性质的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值3 二次函数或()的性质开口方向: 对称轴:(或)顶点坐标:(或)最值: 时有最小值(或)(如图1); 时有最大值(或)(如图2);单调性(单调性的概念无需掌握):二次函数()的变化情况(增减性)如图1所示,当时,对称轴左侧,随着的增大而减小,在对称轴的右侧 ,随的增大而增大;如图2所示,当时,对称轴左侧, y随着
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 上册 22 二次 函数 图像 性质 知识点 题型 总结
链接地址:https://www.31ppt.com/p-3989395.html