人教版21章一元二次方程知识点总结.doc
《人教版21章一元二次方程知识点总结.doc》由会员分享,可在线阅读,更多相关《人教版21章一元二次方程知识点总结.doc(9页珍藏版)》请在三一办公上搜索。
1、21章 一元二次方程知识点一、一元二次方程 1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。 注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:,它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须
2、把它先化为一般形式。(3)形如不一定是一元二次方程,当且仅当时是一元二次方程。二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当时,所以是方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等)三、一元二次方程的解法 1、直接开平方法:直接开平方法理论依据:平方根的定义。 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 根据平方根的定义可知,是b的平方根,当时,当b0时,一元二次方程有2个不相等的实数根;II 当=0时,一元二次方程有2个相同的实数根;III 当0时,一元二次方程没有实数根利用根的判别式判定一元二次方程根
3、的情况的步骤:把所有一元二次方程化为一般形式;确定的值;计算的值;根据的符号判定方程根的情况。 根的判别式的逆用 在方程中,(1)方程有两个不相等的实数根0(2)方程有两个相等的实数根=0(3)方程没有实数根0注意:逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件。四、一元二次方程根与系数的关系(韦达定理) 如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。五、一元二次方程的应用知识点一 列一元二次方程解应用题的一般步骤(1) 审
4、题,(2)设未知数,(3)列方程,(4)解方程,(5)检验,(6)作答。关键点:找出题中的等量关系。(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系这一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要恰当灵活设元直接影响着列方程与解方程的难易;(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程找出相等关系列方程是解决问题的关键;(4)“解”就是求出所列方程的解;(5)检验
5、 应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等因此,解出方程的根后,一定要进行检验 (6)作答 知识点二 用一元二次方程解与增长率(或降低率)有关的问题 增长率问题的有关公式:增长数(增长了多少)=基数增长率实际数(增长后的值)=基数增长数增长率问题与降低率问题的数量关系及表示法:1. 若基数为a,增长率为,则一次增长后的值为,两次增长后的值为;2. 若基数为a,降低率为,则一次降低后的值为,两次降低后的值为。 两次增长后的总和等于基数+第一次降低后的值+第二次降低后的值知识点三 用一元二次方程解与市场经济有关的问题与市场经济有关的问题:如:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 21 一元 二次方程 知识点 总结
链接地址:https://www.31ppt.com/p-3988855.html