特殊的线性变换毕业论文.doc
《特殊的线性变换毕业论文.doc》由会员分享,可在线阅读,更多相关《特殊的线性变换毕业论文.doc(27页珍藏版)》请在三一办公上搜索。
1、 毕 业 设 计( 论 文 )题目特殊的线性变换作者xx学院数学与计算科学学院专业数学与应用数学学号xxx指导教师xxxx 毕业设计(论文)任务书 xxxxxx 院 xxxxxx 系(教研室)系(教研室)主任: (签名) 年 月 日学生姓名: xx 学号: xxxxx 专业: 数学与应用数学 1 设计(论文)题目及专题: 特殊的线性变换 2 学生设计(论文)时间:自 2012年 2 月 20 日开始至 2012 年 5 月 27 日止3 设计(论文)所用资源和参考资料:1 钱吉林.高等代数题解精粹M.武汉:中央名族大学出版社,2005.2 杨子胥.高等代数习题解M.济南:山东科学技术出版社,2
2、003.3 方保镕.矩阵论M.北京:清华大学出版社,2004.4 程云鹏.矩阵论M.西安:西北工业大学出版社,2000.5 王萼芳.高等代数(第三版)M.北京:高等教育出版社,2005.6 钟太勇.幂等矩阵与幂等变换性质的探讨J.郧阳师范高等专科学校学报,2005,25(3).7 郭素霞.关于幂等变换性质的讨论J.衡水学院学报,2008,10(4).4 设计(论文)应完成的主要内容:(1)主要讨论对称变换、反对称变换、幂等变换、对合变换、幂零变换五类特殊的线性变换;(2)讨论以上这些特殊线性变换的定义及性质;(3)对上面每一种线性变换给出它们与对应矩阵之间的关系;(4)讨论以上这些特殊的线性变
3、换对应的特殊矩阵的性质;5 提交设计(论文)形式(设计说明与图纸或论文等)及要求:提交一份8000字以上的纸质文档和电子文档,要求打印格式按湖南科技大学关于本科生毕业论文的要求,论文内容要求结论正确,论证充分,而且有一定的创新6 发题时间: 2012 年 1 月 05 日指导教师: (签名)学 生: (签名) 线性变换无论在数学基础理论还是在应用中都有重要的地位,尤其是一些特殊的线性变换如对称、反对称变换,幂等变换、对合变换及幂零变换,也是线性变换中的重要内容。随着特殊的线性变换的应用越来越广泛,越来越多的人关注特殊的线性变换的研究,并且已经取得了丰富的成果。本文在前人的基础上比较系统、深入和
4、细致地研究了五类特殊的线性变换的若干性质,更全面的探讨特殊的矩阵,还讨论了这些特殊的线性变换及其矩阵之间的关系。关键词:对称变换;反对称变换;幂等变换;对合变换;幂零变换ABSTRACTLinear transformation in terms of the theory of mathematical foundations and applications have an important role, especially in some special linear transformation, such as symmetric, asymmetric transformatio
5、n idempotent transformation involutory transformation and nilpotent transformation, is also a linear transformationthe important content. With the special linear transformation more widely, more and more people are concerned about the special linear transformation, and has achieved fruitful results.
6、 On the basis of previous systems, in-depth and detailed study of the five special linear transformation of a number of nature, a more comprehensive discussion of the special matrix, was also discussed between special linear transformation and its matrix relationship.Keywords: symmetric transformati
7、on;anti-symmetric transformation;idempotent transformation; involution transformation;nilpotent transformation目 录第一章 前 言1第二章 对称变换22.1 对称变换的定义及性质22.2 对称变换和对称矩阵3第三章 反对称变换7第四章 幂等变换104.1 幂等变换定义及性质104.2 幂等矩阵及其性质11第五章 对合变换155.1 对合变换定义及性质155.2 对合矩阵及性质15第六章 幂零变换18第七章 结 论21参考文献22致 谢23第一章 前 言线性变换是研究线性代数问题的重要工
8、具,线性变换在给定的一组基下对应唯一矩阵,并且这种对应保持很多性质,比如线性性、可逆性等等这给我们提供了研究线性变换的一种思想方法线性变换的思想不仅在日程数学的学习和研究中有着重要的重要,在物理、化学、经济等诸多领域也起着非常重要的作用。在学习线性变换的内容是我们会经常提到一些特殊的线性变换,通常都会出现在解决特定的问题上面,通过使用特殊的线性变换定义,发现起到了很好的效果,不仅仅在解决问题方面简明快捷而且比较容易理解。但是对于特殊的线性变换我们了解甚少,比如对称变换、反对称变换、幂等变换、对合变换和幂零变换作为特殊的线性变换无论在理论方面,还是在实际应用方面都有重要的意义我们在研究线性变换及
9、学习有关数学知识时,经常要讨论这些特殊的线性变换这些特殊的线性变换并没有引起我们足够的关注,也很少有同学更加深入的去学习和研究特殊的线性变换,包括其定义和推理证明。因为在日常的学习中我对于特殊的线性变换的内容应用的比较多,觉得特殊的线性变换需要引起我们的足够重视,所以特在此总结我的学习成果。本文先给出这些特殊线性变换及对应矩阵的定义,这些特殊矩阵的性质在高等代数的学习中没有系统的研究过然后系统地研究了这五类特殊的线性变换及其矩阵的性质,并给出了相应的证明算是粗略的对特殊的线性变换进行额一次总结。第二章 对称变换2.1 对称变换的定义及性质定义2.1 设为欧氏空间的一个线性变换,若对任意两个向量
10、都有成立,则称为的对称变换对称变换是线性变换中经常用到的特殊的变换,教材中在讨论对称变换时只给出了定义,但对其性质的研究很少,下面讨论对称变换的几个性质性质2.1 设是维欧氏空间的对称变换,则对中任意,都有的充要条件是的特征根都是非负实数证明 设是的一组标准正交基,且由于是对称变换,所以,令,则于是是半正定阵 的特征根都是非负实数 的特征根都是非负实数性质2.2 若为维欧氏空间的对称变换,则是的正交补证明 ,,则,于是所以,此即,从而又因为故1 性质2.3 设为维欧氏空间的一个线性变换,则为对称变换的充分必要条件是有个两两正交的特征向量证明 必要性:设为对称变换,且在标准正交基下的方阵为,则为
11、实对称方阵,从而存在正交方阵,使 (1)其中为的全部特征值令,则也是标准正交基,在此基下的方阵为,从而由(1)知即有个两两相交的特征向量充分性:设有个两两正交的特征向量,且令则为的一组标准正交基,且在此基下的矩阵为由于是实对称的,故为对称变换性质2.4 设为维欧氏空间的一个对称变换,是的一个特征值,则的重数等于特征子空间的维数(即对称变换的任一特征值其代数重数等于几何重数)证明 设是的特征多项式的重根,则又因是对称变换,故存在基,使在此基下的方阵为,则有其中为的全部特征值现不妨设,则从而为中个线性无关的向量,所以故22.2 对称变换和对称矩阵下面考虑对称变换对应的矩阵与对称变换的关系设为欧氏空
12、间中的一个对称变换,是的一组标准正交基,并设在基下的矩阵为,即 ,由对称变换的定义,有,即,因为是标准正交基,故有, 这说明是一个实对称矩阵反之,任给一个阶实对称矩阵,在维欧氏空间中取定一组标准正交基,由定义一个线性变换,使,于是,记在下的坐标分别为,则,这说明是一个对称变换由此可得下面的定理:定理2.1 维欧氏空间的线性变换是实对称变换的充要条件是:在标准正交基下的矩阵是实对称矩阵,即有3这样,我们就建立了对称变换和对称矩阵之间的对应关系利用定义,我们还可以得到矩阵在内积运算中的转移规则,这个规则有时是很有用的,下面分两种情况讨论(1)若是对称矩阵,且,则在内积中的转移规则为(2)若不是对称
13、矩阵,且,则有,事实上,了解了这些性质后,我们接着讨论实对称矩阵的特征值和特征向量实对称矩阵的特征值和特征向量有下面的重要性质,现以定理形式给出3定理2.2 实对称矩阵的特征值都是实数证明 假定是实对称矩阵,是它的一个特征值,是属于的特征向量,则,两边取共轭得 ,再由共轭复数的性质,有,取转置,且注意,从而有,用右乘上式子,便得,即 ,但,故有,这就表明是实数定理2.3 实对称矩阵的不同特征值所对应的特征向量是正交的证明 设,是实对称矩阵的两个不相同的特征值,且由于,因而,即 ,但是,因而所以,就表明与正交应该注意,就实对称矩阵而言,属于同一特征值的的线性无关的特征向量不一定是正交的但是,可以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特殊的线性变换 毕业论文 特殊 线性变换
链接地址:https://www.31ppt.com/p-3988205.html