二次函数知识点总结及相关典型题目(学生用).doc
《二次函数知识点总结及相关典型题目(学生用).doc》由会员分享,可在线阅读,更多相关《二次函数知识点总结及相关典型题目(学生用).doc(5页珍藏版)》请在三一办公上搜索。
1、二 次 函 数一、定义:一般地,如果是常数,那么叫做的二次函数.例:已知关于x的函数)当a,b,c满足什么条件时 (1)是一次函数 (2)是正比例函数 (3)是二次函数yxO二、二次函数是常数,的性质(1)当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点.越大,开口越小。(2)顶点是,对称轴是直线(3)当时,在对称轴左边,y随x的增大而减小;在在对称轴右边,y随x的增大而增大;当时,在对称轴左边,y随x的增大而增大;在在对称轴右边,y随x的增大而减小。(4) 轴与抛物线得交点为(0,) 例:1、(2011四川重庆,7,4分)已知抛物线yax2bxc(a0)在平面直角坐标系中的
2、位置如图所示,则下列结论中正确的是( )山东威海题图A a0 B b0 C c0 D abc0练习:1、(2011山东威海,7,3分)二次函数的图象如图所示当y0时,自变量x的取值范围是( )A1x3Bx1C x3Dx1或x32、(2010湖北孝感,12,3分)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为,下列结论:ac0;a+b=0;4acb2=4a;a+b+c0.其中正确的个数是( )A. 1 B. 2 C. 3 D. 4三、求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线. (2)配方法:的顶点为(,),对称轴是直线.(3)利用交点式求对称轴及
3、顶点:,对称轴为例1、求下列各抛物线的顶点和对称轴: (1) (2) (3)例2、2011江苏淮安,14,3分)抛物线y=x2-2x-3的顶点坐标是 .(1,4)四、抛物线的平移方法1:计算机两条抛物线的顶点,由顶点判定平移情况方法2:将函数换成顶点式,用口决“(x)左加右减,上加下减”例1、 抛物线经过怎样平移得到例2、(2011四川乐山5,3分)将抛物线向左平移2个单位后,得到的抛物线的解析式是( ) A B C D例3、( 2011重庆江津, 18,4分)将抛物线y=x22x向上平移3个单位,再向右平移4个单位等到的抛物线是_.练习:1、抛物线经过怎样平移得到2、抛物线向左平移2个单位,
4、再向上移3个单位得到,求b和c。3、(2011山东滨州,7,3分)抛物线可以由抛物线平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位五、用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,通常选择一般式. (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:. (4)一般式与顶点式的变换例:1、根据已知条件确定下列函数的解析式:(1)已知抛物线过(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 知识点 总结 相关 典型 题目 学生
链接地址:https://www.31ppt.com/p-3988152.html