灰度图像二值化方法研究毕业设计论文.doc
《灰度图像二值化方法研究毕业设计论文.doc》由会员分享,可在线阅读,更多相关《灰度图像二值化方法研究毕业设计论文.doc(45页珍藏版)》请在三一办公上搜索。
1、毕业设计(论文)灰度图像二值化方法研究毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校
2、有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 目 录摘 要IIIAbstractIV第一章 绪 论11.1 图像与数字图像11.2 数字图像处理技术内容与发展现状21.3 灰度图像二值化原理及意义4第二章 软件工具MATLAB62.1 MATLAB概述62.2 MATLAB的工作环境62.3 MATLAB图像处理工具箱82.4 工具箱实现的常用功能9第三章 图像二值化方法113.1 课题研究对象113.2 二值化方法研究动态133.3 全局
3、阈值法183.4 局部阈值法18第四章 Otsu方法和Bernsen方法204.1 Otsu算法分析204.2 Otsu方法流程图224.3 Bernsen算法分析234.4 Bernsen方法流程图23第五章 Otsu方法和Bernsen方法实验比较255.1 Otsu方法实验结果分析255.2 Bernsen方法结果分析275.3 0tsu方法和Bernsen方法实验结果比较285.4 结论29结束语31参考文献32致 谢33附录:源代码34摘 要在人类获取的信息中,视觉信息约占60%,听觉约占20%,其它约占20%。由此可见,视觉信息对人类非常重要。同时,图像是人类获取视觉信息的主要途径
4、。图像二值化是图像预处理中的一项重要技术,在模式识别、光学字符识别、医学成像等方面都有重要应用。论文介绍了图像及数字图像处理技术的一些概念和相关知识;对Matlab7.0 软件的发展和软件在图像处理中的应用做了简要介绍;还介绍了灰度图像二值化方法以及利用Matlab7.0软件工具进行算法的实现。课题重点实现了图像分割技术中灰度图像二值化方法,如Otsu算法、Bernsen算法,并对这些算法运行的实验结果进行分析与比较。 关键词:图像处理,二值化,Matlab,Otsu算法,Bernsen算法AbstractHuman beings obtain a lot of information, am
5、ong which the visual information is about 60%, the sense of hearing about 20%, and others about 20%. Therefore, the visual information is very important for human beings. Moreover, the images are the primary way, by which a lot of information is obtained. Image binarization, as an important technolo
6、gy in image pre-processing, is widely-employed in pattern recognition, optical character recognition, medical imaging and so forth. In this paper, some notions and relative knowledge in digital image processing technology are introduced; then, the development of Matlab7.0 and its application in imag
7、e processing briefly introduced; in addition, the method of grayscale image binarization and how to implement these algorithms based on Matlab7.0 are presented. This paper mainly implements the grayscale image binarization method in image segmentation technology, such as Otsu algorithm and Bernsen a
8、lgorithm, and analyzes and compares the experimental results of the above algorithms.Keywords: Image processing, Binarization, Matlab, Otsu algorithm, Bernsen algorithm第一章 绪 论1.1 图像与数字图像图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此
9、可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。但就其本质来说,可以将图像分为以下两大类。模拟图像。包括光学图像、照相图像、电视图像等。比如人在显微镜下看到的图像就是一幅光学模拟图像。对模拟图像的处理速度快,但精度和灵活性差,不易查找和判断。数字图像。数字图像是将连续的模拟图像经过离散化处理后得到的计算机能够辨识的点阵图像。
10、在严格意义上讲,数字图像是经过等距离矩形网格采样,对幅度进行等间隔量化的二维函数。因此,数字图像实际上就是被量化的二维采样数组。一幅数字图像都是由若干个数据点组成的,每个数据点称为像素(pixel)。比如一幅256400,就是指该图像是由水平方向上256列像素和垂直方向上400行像素组成的矩形图。每一个像素具有自己的属性,如颜色(color)、灰度(gray scale)等,颜色和灰度是决定一幅图像表现里的关键因素。其中颜色量化等级包括单色、四色、16色、256色、24位真彩色等,量化等级越高,则量化误差越小,图像的颜色表现力越强。同样,灰度是单色图像中像素亮度的表征,量化等级越高,表现力越强
11、。但是随着量化等级的增加,数据量将大大增加,使得图像处理的计算量和复杂度相应的增加。与模拟图像相比,数字图像具有以下显著优点:(1) 精度高。目前的计算机技术可以将一幅模拟图像数字化为任意的二维数组,即数字图像可以由无限个像素组成,每个像素的亮度可以量化为12位(即4096个灰度级),这样的精度是数字图像处理与彩色照片的效果相差无几。(2) 处理方便。数字图像在本质上是一组数据,所以可以用计算机对他进行任意方式的修改,如放大、缩小、改变颜色、复制和删除某一部分等。(3) 重复性好。模拟图像,如照片,即便是使用非常好的底片和相纸,也会随着时间的流逝而褪色、发黄,而数字图像可以存储在光盘中,上百年
12、后再用计算机重现也不会有丝毫的改变。1.2 数字图像处理技术内容与发展现状数字图像处理就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。图像处理的基础是数字,主要任务是进行各种算法设计和算法实现。目前,图像处理技术已经在许多不同的应用领域中得到重视,并取得了巨大成就。根据应用领域要求的不同,数字图像处理技术可以分为许多分支技术。重要的分支技术有:(1) 图像变换。图像阵列很大时,若直接在空域中处理,计算量将很大。为此,通常采用各种图像变换方法,如傅立叶变换、沃尔什变换、离散余弦变换、小波变换等间接处理技术,将空域处理转换到变换域处理,这样可以有效地减少计
13、算量,提高处理性能。(2) 图像增强与复原。主要目的是增强图像中的有用信心,削弱干扰和噪声,使图像更加清晰,或者将其转换为更适合人或机器分析的形式。图像增强并不是要求真实地反映原始图像,而图像复原则要求尽量消除或减少获取图像过程中所产生的某些退化,使图像能够反映原始图像的真实面貌。(3) 图像压缩编码。在满足一定保真度条件下,对图像信息进行编码,可以压缩图像信息量,简化图像的边式,从而大大压缩图像描述的数据量,以便存储和传输;图像压缩在不同应用背景下可以采用不失真压缩和失真压缩。(4) 图像分割。图像分割是数字图像处理中的关键技术之一,是为了将图像中有意义的特征提取出来。它是进一步进行图像识别
14、、分析和理解的基础。图像的有意义特征包括图像的边缘、区域等。(5) 图像分析。对图像中的不同对象进行分割、分类、识别、描述和解释。(6) 图像识别。图像识别属于模式识别的范畴,起主要内容是在图像经过某些预处理(增强、复原、压缩)后,进行图像分割和提取,从而进行判别分类。图像分类常用的经典识别方法有统计模式分类和句法模式分类。近年来,新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中越来越受到重视。(7) 图像隐藏。是指媒体信息的相互隐藏,常见的有数字水印和图像的信息伪装等。以上图像处理内容也并非孤立存在的,往往相互联系,而一个实用的图像处理系统通常需要将几种图像处理技术结合起来,才能得
15、到所需要的结果。例如,图像变换是图像编码技术的基础,而图像增强与复原一般又是图像处理的最终目的,也可以作为进一步图像处理工作的准备;通过图像分割得到的图像特征既可以作为最后结果,也可以作为下一步图像分析的基础。不同的图像处理技术应用与不同的领域,发展出不同的分支学科,如遥感图像处理、医学图像处理等,其他如计算机图形学、模式识别、人工智能和机器人视觉等学科领域也与图像处理有着密切的关系。图像处理技术的发展大致经历了初创期、发展期、普及期和实用化期4个阶段。初创期开始与20世纪60年代,当时的图像采用像素型光栅进行少秒显示,大多采用中、大型机对其处理。在这一时期,由于图像存储成本高、处理设备昂贵,
16、其应用面很窄。进入20世纪70年代的发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描方式,特别是CT和卫星遥感图像的出现,对图像处理技术的发展起到了很好的推动作用。到了20世纪80年代,图像处理技术进入普及期,此时的微机已经能够担当起图形图像处理的任务。超大规模集成电路(Very Large Scale Integration, VLSI)的出现更使处理速度大大提高,设备造价也进一步降低,极大地促进了图形图像系统的普及和应用。20世纪90年代是图像处理技术的实用化时期,图像处理的信息量巨大,对处理速度的要求极高。针对现有的实际应用,数字图像处理具有以下特点。(1) 信息量大,
17、要求处理速度比较快。目前,数字图像处理的信息大多是二维信息,处理信息量很大。比如一幅256256低分辨率的黑白图像,要求64Kbit的数据量;对高分辨率彩色512512图像,则要求256Kbit数据量;如果要处理30帧/s的视频图像,则每秒要求处理500Kbit22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。(2) 占用频带较宽。与语音信息相比,数字图像占用的频带要大几个数量级。如电视图像的带宽约56MHz,而语音带宽仅为4KHz左右。所以数字图像在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本高,且对频带压缩技术提出了更高的要求。(3) 数字图像中各个
18、像素间的相关性强,压缩潜力大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上。一般而言,相邻两帧之间的相关性比帧内相关性还要大。因此,图像处理中的信息压缩潜力巨大。(4) 图像质量评价受主观因素影响。数字图像处理后的图像一般需要给人观察和评价,而人的视觉系统很复杂,受环境条件、视觉性能、人的情绪、爱好以及知识状况影响很大,因此评价结果受人的主观因素影响较大。为此,如何客观评价图像质量还有待进一步深入的研究。另外,计算机视觉是模仿人的视觉,人类的感知原理必然严重影响计算机视觉的研究。(5) 图像处理技术综合性强。数
19、字图像处理技术中设计的基础知识和专业技术相当广泛,通常涉及通信技术、计算机技术、电子技术、电视技术以及更多的数学、物理等方面的基础知识。例如,图像编码的理论基础是信息论和抽象数学的结合,而图像识别则需要掌握随机过程和信号处理方面的知识。此外,不少课题还需要更加专业的知识,如小波变换、神经网络、分形理论等。另外,图像处理是一门应用性很强的学问,必须与计算机技术的发展相适应。随着电子技术和计算机技术的不断提高和普及,数字图像处理技术进入高速发展时期。1.3 灰度图像二值化原理及意义灰度图像是指只含亮度信息,不含色彩信息的图像。将彩色图像转化成为灰度图像的过程称为图像的灰度化处理。彩色图像中的每个像
20、素的颜色有R、G、B三个分量决定,而每个分量有255种值可取,这样一个像素点可以有1600多万的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,一个像素点的变化范围为255种,所以在数字图像处理中一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可先求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。图像的二值化处理就是将图像上的点的灰度置为0或255,也就是使整个图像呈现出明显的黑白效果。即将256个亮度等级的灰
21、度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于再对图像做进一步处理时,图像的集合性质只与像素的值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。二值图像在图像分析中应用非常广泛,二值图像就是指只有两个灰度级的图像,二值图像具有存储空间小,处理速度快,可以方便地对图像进行布尔逻辑运算等特点。更重要的是,在二值图像的基础上,还可以进一步对
22、图像处理,获得该图像的一些几何特征或者其他更多特征。第二章 软件工具MATLAB2.1 MATLAB概述MATLAB是Matrix Laboratory的缩写,是由美国MathWorks公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。它集数值分析,矩阵运算,信号处理和图形显示于一体,构成了一个方便的,界面友好的用户环境,而且还具有可扩展性特征。MathWorks公司针对不同领域的应用,推出了信号处理,控制系统,神经网络,图像处理,小波分析,鲁棒控制,非线性系统控制设计,系统辨识,优化设
23、计,统计分析,财政金融,样条,通信等30多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。同时,工具箱内的函数源程序也是开放性的,多为M文件,用户可以查看这些文件的代码并进行更改,MALAB支持用户对其函数进行二次开发,用户的应用程序也可以作为新的函数添加到相应的工具箱中。MATLAB中的数字图像是以矩阵形式表示的,这意味着MATLAB强大的矩阵运算能力用于图像处理非常有利,矩阵运算的语法对MATLAB中的数字图像同样适用。本文对MATLAB图像处理工具箱进行探索及应用,实验证明该软件功能强大,语言简洁易学,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 灰度 图像 二值化 方法 研究 毕业设计 论文
链接地址:https://www.31ppt.com/p-3987644.html