中考数学(平行四边形提高练习题)压轴题训练附答案.doc
《中考数学(平行四边形提高练习题)压轴题训练附答案.doc》由会员分享,可在线阅读,更多相关《中考数学(平行四边形提高练习题)压轴题训练附答案.doc(20页珍藏版)》请在三一办公上搜索。
1、一、平行四边形真题与模拟题分类汇编(难题易错题)1如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形(1)用尺规将图1中的ABC分割成两个互补三角形;(2)证明图2中的ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、的三角形,并计算图3中六边形DEFGHI的面积若ABC的面积为2,求以EF、DI、HG的长为边的三角形面积【答案】(
2、1)作图见解析(2)证明见解析(3)62;6【解析】试题分析:(1)作BC边上的中线AD即可(2)根据互补三角形的定义证明即可(3)画出图形后,利用割补法求面积即可平移CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明SEFM=3SABC即可试题解析:(1)如图1中,作BC边上的中线AD,ABD和ADC是互补三角形(2)如图2中,延长FA到点H,使得AH=AF,连接EH四边形ABDE,四边形ACGF是正方形,AB=AE,AF=AC,BAE=CAF=90,EAF+BAC=180,AEF和ABC是两个互补三角形EAH+HAB=BAC+HAB=90,EAH=BAC,AF=AC,AH=AB,
3、在AEH和ABC中,AEHABC,SAEF=SAEH=SABC(3)边长为、的三角形如图4所示SABC=3421.53=5.5,S六边形=17+13+10+45.5=62如图3中,平移CHG到AMF,连接EM,IM,则AM=CH=BI,设ABC=x,AMCH,CHBC,AMBC,EAM=90+90x=180x,DBI=3609090x=180x,EAM=DBI,AE=BD,AEMDBI,在DBI和ABC中,DB=AB,BI=BC,DBI+ABC=180,DBI和ABC是互补三角形,SAEM=SAEF=SAFM=2,SEFM=3SABC=6考点:1、作图应用与设计,2、三角形面积2已知:如图,在
4、平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF(1)求证:DOEBOF(2)当DOE等于多少度时,四边形BFDE为菱形?请说明理由【答案】(1)证明见解析;(2)当DOE=90时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出DOEBOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案试题解析:(1)在ABCD中,O为对角线BD的中点,BO=DO,EDB=FBO,在EOD和FOB
5、中,DOEBOF(ASA);(2)当DOE=90时,四边形BFDE为菱形,理由:DOEBOF,OE=OF,又OB=OD,四边形EBFD是平行四边形,EOD=90,EFBD,四边形BFDE为菱形考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定3如图,四边形是知形,点是线段上一动点(不与重合),点是线段延长线上一动点,连接交于点.设,已知与之间的函数关系如图所示.(1)求图中与的函数表达式;(2)求证:;(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,说明理由【答案】(1)y2x+4(0x2);(2)见解析;(3)存在,x或或【解析】【分析】(1)利用待定系数法可得
6、y与x的函数表达式;(2)证明CDEADF,得ADFCDE,可得结论;(3)分三种情况:若DEDG,则DGEDEG,若DEEG,如图,作EHCD,交AD于H,若DGEG,则GDEGED,分别列方程计算可得结论【详解】(1)设ykx+b,由图象得:当x1时,y2,当x0时,y4,代入得:,得,y2x+4(0x2);(2)BEx,BC2CE2x,四边形ABCD是矩形,CDAF90,CDEADF,ADFCDE,ADF+EDGCDE+EDG90,DEDF;(3)假设存在x的值,使得DEG是等腰三角形,若DEDG,则DGEDEG,四边形ABCD是矩形,ADBC,B90,DGEGEB,DEGBEG,在DE
7、F和BEF中,DEFBEF(AAS),DEBEx,CE2x,在RtCDE中,由勾股定理得:1+(2x)2x2,x;若DEEG,如图,作EHCD,交AD于H,ADBC,EHCD,四边形CDHE是平行四边形,C90,四边形CDHE是矩形,EHCD1,DHCE2x,EHDG,HGDH2x,AG2x2,EHCD,DCAB,EHAF,EHGFAG,(舍),若DGEG,则GDEGED,ADBC,GDEDEC,GEDDEC,CEDF90,CDEDFE,CDEADF,2x,x,综上,x或或【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质
8、和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键4如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:yx+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EFx轴交直线AB于点F,以EF为一边向右作正方形EFGH(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t0)当点F1移动到点B时,求t的值;当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与APE重叠部分的面积【
9、答案】(1)EF15;(2)10;120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-x+40,可求出P点坐标,进而求出F点坐标即可;(2)易求B(0,5),当点F1移动到点B时,t=10=10;F点移动到F的距离是t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在RtFNF中,=,EM=NG=15-FN=15-3t,在RtDMH中,t=4,S=(12+)11=;当点G运动到直线DE上时,在RtFPK中,=,PK=t-3,FK=3t-9,在RtPKG中,t=7,S=15(15-7)=120.【详解】(1)设直线DE的直线解析式yk
10、x+b,将点E(30,0),点D(0,40),yx+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),EF15;(2)易求B(0,5),BF10,当点F1移动到点B时,t1010;当点H运动到直线DE上时,F点移动到F的距离是t,在RtFNF中,=,FNt,FN3t,MHFNt,EMNG15FN153t,在RtDMH中,t4,EM3,MH4,S;当点G运动到直线DE上时,F点移动到F的距离是t,PF3,PFt3,在RtFPK中,PKt3,FK3t9,在RtPKG中,t7,S15(157)120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式
11、,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键5在中,于点,点为边的中点,过点作,交的延长线于点,连接如图,求证:四边形是矩形;如图,当时,取的中点,连接、,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形)【答案】(1) 证明见解析;(2)四边形、四边形、四边形、四边形、四边形都是平行四边形【解析】【分析】(1)由AEFCED,推出EF=DE,又AE=EC,推出四边形ADCF是平行四边形,只要证明ADC=90,即可推出四边形ADCF是矩形(2)四边形ABDF、四边形AGEF、四边形GBDE、四边形AG
12、DE、四边形GDCE都是平行四边形【详解】证明:,是中点,在和中,四边形是平行四边形,四边形是矩形线段、线段、线段都是的中位线,又,四边形、四边形、四边形、四边形、四边形都是平行四边形【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.6如图1,在长方形纸片ABCD中,AB=mAD,其中m1,将它沿EF折叠(点E.F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设,其中0n1.(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;(2)如图3,
13、当(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;(3)如图1,当m=2(即AB=2AD),n的值发生变化时,的值是否发生变化?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.【解析】试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出ADENDF,就可以得出AE=NF,DE=DF,在RtAED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.(2)延长PM交EA延长线于G,由条件可以得出PDMGAM,EMPEMG由全等三角形的性质就可以得出结论.(3)如图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 平行四边形 提高 练习题 压轴 训练 答案
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3986231.html