专题:带电粒子在有界磁场中的运动剖析.doc
《专题:带电粒子在有界磁场中的运动剖析.doc》由会员分享,可在线阅读,更多相关《专题:带电粒子在有界磁场中的运动剖析.doc(12页珍藏版)》请在三一办公上搜索。
1、带电粒子在有界磁场中的运动带电粒子在磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及几何知识。一、 带电粒子在半无界磁场中的运动vvv试画出以下三个情景中负电荷的运动轨迹O【例1】一个负离子,质量为m,电量大小为q,以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图所示。磁感应强度B的方向与离子的运动方向垂直,并垂直于图中纸面向里.(1)求离子进入磁场后到达屏S上时的位置与O点的距离.S(2)离子在磁场中运动的时间. MNBOv【例2】 如图直线MN上方有磁感应强度为B的匀强磁场。正、负粒子同时从同一点O以与MN成3
2、0角的同样速度v射入磁场(粒子质量均为m,电荷为q),它们从磁场中射出时相距多远?射出的时间差是多少?图6二带电粒子在双边界磁场中的运动例3如图所示,一束电荷量为e的电子以垂直于磁感应强度B并垂直于磁场边界的速度v射入宽度为d的匀强磁场中,穿出磁场时速度方向和原来射入方向的夹角为60,求电子的质量和穿越磁场的时间总结:思路方法1找圆心:利用vR;利用弦的中垂线;两条切线夹角的平分线过圆心。2定半径: 几何法求半径,构建直角三角形,利用勾股定理或三角函数求解;向心力公式求半径(R = )3确定运动时间: 练习1如图所示,有界匀强磁场边界线SPMN,速率不同的同种带电粒子从S点沿SP方向同时射入磁
3、场其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60角,设粒子从S到a、b所需时间分别为t1和t2,则t1t2为(重力不计) () A13 B43 C11 D32三带电粒子在圆形磁场中的运动例4: 如图所示,分布在半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里。电量为q、质量为m的带正电的粒子以速度v从磁场边缘A点沿圆的半径AO方向射入磁场,离开磁场时速度方向偏转了60角。(1)求粒子做圆周运动的半径(2)求粒子射入的初速度以及在磁场中的运动时间 r vRvO/O方法总结:画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏角可由求出。经历时间由得出。注意
4、:由对称性,射出线的反向延长线必过磁场圆的圆心。图4 练习2如图4所示为一圆形区域的匀强磁场,在O点处有一放射源,沿半径方向射出速率为v的不同带电粒子,其中带电粒子1从A点飞出磁场,带电粒子2从B点飞出磁场,不考虑带电粒子的重力则 ()A带电粒子1的比荷与带电粒子2的比荷比值为31B带电粒子1的比荷与带电粒子2的比荷比值为1C带电粒子1与带电粒子2在磁场中运动时间比值为21D带电粒子1与带电粒子2在磁场中运动时间比值为12针对训练图11 如图1所示,a和b带电荷量相同,以相同动能从A点射入磁场,在匀强磁场中做圆周运动的半径ra2rb,则可知(重力不计) ()A两粒子都带正电,质量比ma/mb4
5、B两粒子都带负电,质量比ma/mb4C两粒子都带正电,质量比ma/mb1/4D两粒子都带负电,质量比ma/mb1/42如图所示,x轴上方有垂直纸面向里的匀强磁场.有两个质量相同,电荷量也相同的带正、负电的离子(不计重力),以相同速度从O点射入磁场中,射入方向与x轴均夹角.则正、负离子在磁场中A.运动时间相同B.运动轨道半径相同C.重新回到x轴时速度大小和方向均相同D.重新回到x轴时距O点的距离相同3电子自静止开始经M、N板间(两板间的电压为u)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质
6、量为m,电量为e)4 如图5所示,比荷为e/m的电子垂直射入宽度为d、磁感应强度为B的匀强磁场区域,则电子能从右边界射出这个区域,至少应具有的初速度大小为 ()A2eBd/m BeBd/mCeBd/2m D.eBd/m5长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是:A使粒子的速度v5BqL/4m;C使粒子的速度vBqL/m;D使粒子速度BqL/4mv5BqL/4m。yxoBvvaO/6 .一个质量为m电荷量为q
7、的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。7在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿y方向飞出请判断该粒子带何种电荷,并求出其比荷;8如图所示,在y0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸里,磁感应强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平
8、面内,与x轴正向的夹角为.求:(1)该粒子射出磁场的位置;(2)该粒子在磁场中运动的时间.(粒子所受重力不计)带电粒子在磁场中的运动复习课教学案一学习目标1、理解洛伦兹力对粒子不做功。2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动。3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些因素有关。二知识梳理Bv1洛伦兹力的大小电荷静止时F= 电荷速度方向与磁场方向平行时: 电荷速度方向与磁场方向垂直时 电荷速度方向与磁场方向既不垂直又不平行时F= 2洛伦兹力方向(左手定则) 3判断右图中带电粒子(电量q,重力不计)所受洛伦兹力的大小他们
9、的运动情况是: 4一带电量为q,质量为m ,速度为v的带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大?推导:粒子做匀速圆周运动所需的向心力是由粒子所受的洛伦兹力提供的,所以qvB= 由此得出:r= 由于周期T= ,代入式得: T= 总结:由式可知,粒子速度越大,轨迹半径越 ;磁场越强,轨迹半径越 。ab由式可知,粒子运动的周期与粒子的速度大小 。磁场越强,周期越 。三应用演练1半径、周期的计算例1、如图所示,在垂直纸面向里的匀强磁场中,有a、b两个电子从同一处沿垂直磁感线方向开始运动,a的初速度为v,b的初速度为2v则Aa先回到出发点 Bb先回到出发点 Ca、b的轨迹是一对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 带电 粒子 磁场 中的 运动 剖析
链接地址:https://www.31ppt.com/p-3985270.html