专题:基本不等式常见题型归纳.doc
《专题:基本不等式常见题型归纳.doc》由会员分享,可在线阅读,更多相关《专题:基本不等式常见题型归纳.doc(6页珍藏版)》请在三一办公上搜索。
1、专题:基本不等式基本不等式求最值 利用基本不等式求最值:一正、二定、三等号三个不等式关系: (1)a,bR,a2b22ab,当且仅当ab时取等号 (2)a,bR,ab2,当且仅当ab时取等号 (3)a,bR,()2,当且仅当ab时取等号上述三个不等关系揭示了a2b2 ,ab ,ab三者间的不等关系其中,基本不等式及其变形:a,bR,ab2(或ab()2),当且仅当ab时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值【题型一】利用拼凑法构造不等关系【典例1】已知且,则的最小值为 .练习:1若实数满足,且,则的最小值为 2.若实数满足,则的最小值为 3.已知,且,则的最小值为
2、.【典例2】已知x,y为正实数,则的最大值为 【典例3】若正数、满足,则的最小值为_.变式:1.若,且满足,则的最大值为_.2.设,则的最小值为_ 3.设,则的最大值为_ 4.已知正数,满足,则的最小值为 【题型二】含条件的最值求法【典例4】已知正数满足,则的最小值为 练习1已知正数满足,则的最小值为 .2.已知正数满足,则的最小值为 3已知函数的图像经过点,如下图所示,则的最小值为 .4己知a,b为正数,且直线 与直线 互相平行,则2a+3b的最小值为_5.常数a,b和正变量x,y满足ab16,.若x2y的最小值为64,则ab_.6.已知正实数满足,则的最大值为 【题型三】代入消元法【典例5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 基本 不等式 常见 题型 归纳
链接地址:https://www.31ppt.com/p-3985198.html