毕业设计(论文)调速永磁同步电动机的电磁设计.doc
《毕业设计(论文)调速永磁同步电动机的电磁设计.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)调速永磁同步电动机的电磁设计.doc(24页珍藏版)》请在三一办公上搜索。
1、第一章 概述1.1永磁同步电机的发展前景 近年来,随着永磁材料性能的不断提高和完善,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善和价格的逐步降低以及电力电子器件的进一步发展,加上永磁电机研究开发经验的逐步成熟,经大力推广和应用已有研究成果,使永磁电机在国防、工农业生产和日常生活等方面获得越来越广泛的应用。正向大功率化(高转速、高转矩)、高功能化和微型化方面发展。目前,稀土永磁电机的单台容量已超过1000KW,最高转速已超过300000r/min,最低转速低于0.01r/min,最小电机的外径只有0.8mm,长1.2mm。 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它
2、没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。电动机及其驱动系统的耗电量约占工业用电总量的三分之二左右, 2006年国际电工委员会IEC制定了IEC60034- 30电动机新标准, 其目的在于淘汰低效率电动机, 开发与应用高效率和
3、超高效率电动机, 美国在NEMA 高效电机的基础上又制定了新NEMA 高效标准, 把效率指标再提高2% -3% , 在我国 十一五!规划的节能工程中涉及到更新和淘汰低效率电动机及高耗电设备, 推广高效节能电动机、稀土永磁电动机、高效传动系统等, 所以开发高效节能稀土永磁电动机具有实际工程应用的意义。在电力拖动系统中采用调速措施可以提高节能效果, 例如直流电动机调速、交流电动机变极调速或变频调速, 还有采用机械传动结构变速等, 但是机械传动结构变速和变极调速属于有级的调速方式, 直流电动机虽然具有较好的调速性能, 但存在换向火花的缺点, 限制了调速的容量和应用环境, 而变频调速是一种高效节能型的
4、无级调速方式。自从德国工程师F. B laschke等人提出了矢量控制变换理论后, 解决了交流电动机电磁转矩的有效控制 , 近年来, 随着变流技术、计算机技术和现代控制技术的发展, 实现了交流电动机矢量控制的变频调速, 交流电动机调速性能可以与直流调速系统相媲美, 稀土永磁电动机变频调速要比异步电动机变频调速节能效果高5% 以上, 因此, 稀土永磁调速同步电动机在水泵、风机、电梯设备和轨道交通系统等得到广泛的应用。“中东有石油,中国有稀土”。我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土曾是让国人倍感自豪
5、的优势资源,而今却略显尴尬。由于国际市场的压价行为,以牺牲环境为代价开采出来的稀土资源降到“白菜价”。尽管我国的稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平,但是这些优势还没有完全发挥出来,因此,对我国来说,永磁同步电动机的发展还任重而道远,还有很大潜力可开发。充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种永磁电机,对我国国防、工农业、航空事业的发展及综合实力的提升具有重要的理论意义和实用价值。1.2永磁同步电动机的分类永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波
6、形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统或调速永磁同步电动机;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子
7、铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁同步电动机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能特点有所不同。采用正弦波的永磁同步电动机可根据永磁体在转子上放置的位置分为三种:一是永磁体埋在转子内的内磁式永磁同步电动机;一是永磁体安放在转子表面的外磁式永磁同步电动机;第三种是永磁体嵌入或部分嵌入的嵌入式永磁同步电动机。本文主要介绍表贴式转子的永磁同步电动机的设计。1.3调速永磁同步电动机的研究现状虽然无刷直流电动机比调速永磁同步电动机具有控制简单,
8、成本低, 检测简单等优点, 但因为无刷直流电动机的转矩脉动比较大, 铁心损耗也较大, 所以在低速直接驱动场合的应用中,调速永磁同步电动机的性能比无刷直流电动机及其它交流伺服电动机优越得多。不过在发展高性能调速永磁同步电动机中也遇到几个“ 瓶颈” 问题有待于作更深入的研究和探索。存在的主要问题如下: (1)调速永磁同步电动机在使用过程中出现“退磁”现象,而且在低速时也存在齿槽转矩对其转矩波动的影响。(2)检侧误差对控制器调节性能有影响, 发展高精度的速度及位置检侧器件和实现无传感器检测的方法均可克服这种影响。(3)以调速永磁同步电动机作为执行元件构成的永磁交流伺服系统, 由于调速永磁同步电动机本
9、身就是具有一定非线性、强藕合性和时变性的“ 系统” , 同时其伺服对象也存在较强的不确定性和非线性, 加之系统运行时易受到不同程度的干扰, 因此采用先进控制策略, 先进的控制系统实现方式如基于控制, 以从整体上提高系统的“ 智能化、数字化” 水平, 这应是当前发展高性能调速永磁同步电动机伺服系统的一个主要的“ 突破口”。1.4 永磁电机发展机遇 (1) 更高的综合节能效果 永磁同步电动机由永磁体激磁,无需励磁电流,故可显著提高功率因数(可达1甚至容性);定子电流小,定子铜耗显著减小;转子无铜耗(三相异步电动机转子绕组损耗约占总损耗的2030),因而发热低,可以取消风扇或减小风扇,从而无风摩耗或
10、减少风摩耗,故永磁同步电动机一般比同规格异步电动机效率可提高28,并且在很宽的负载变动范围内始终保持高的效率和功率因数,尤其在轻载运行时节能效果更显著。 (2) 可满足某些工业应用需大的起动转矩和最大转矩倍数的动态需求 常规异步电动机起动转矩倍数和最大转矩倍数都有限,为达要求,需选择更大容量的异步电动机,而到了正常运行状态,异步电动机则又处于轻载运行状态,效率和功率因数均较低。例如为油田抽油机设计的具有异步起动能力的永磁同步电动机,起动转矩倍数可达3.6倍以上,效率可达94,功率因数可达0.95,既满足了负载动态时大转矩的要求,还具有很高的节能效果。 (3) 低速直接驱动的需求 为了提高控制精
11、度、减小振动噪声、杜绝油雾带来的不安全,也为了大转矩驱动的需求,近年来对低速电动机的需求也不断增长。如用于电梯拖动的永磁同步曳引机,转矩提高了十几倍,取消了庞大的齿轮箱,通过曳引轮直接拖动轿厢,明显减小了振动和噪声。又如船用吊舱式电力推进器,将低速大转矩的永磁同步电动机置于船舱外的吊舱,无需原来的传动系统,直接驱动螺旋桨,实现船舶的运行和控制。这是船舶驱动技术的又一发展,国外自上世纪九十年代已成功用于豪华邮轮、专用油轮等。西门子公司吊舱式推进器中PMSM容量已达30000KW。 (4) 多极高功率因数的需求 近年来,永磁同步电动机朝着多极化发展,多极电机可显著减小定、转子铁心轭部高度,从而减小
12、电机体积、减少铁心用量。多极电机还显著减小了定子端部长度,减小定子铜耗、从而减少发热、提高了效率。如某安装于轿厢和井壁间隙的永磁同步电动机,转子采用60极结构,显著缩短了定子线圈端部长度,实现无机房电梯。若仍用异步电动机驱动,随着极数增加,其功率因数明显降低,在轻载和空载时,功率因数将更低,因此在Y型系列电机中,10极电机已不多见。而该60极永磁同步电动机功率因数高达0.98,空载、轻载时甚至可达1,节能效果明显。 (5)高功率密度的需求 舰船、车辆受体积所限,要求电动机要有高功率密度、高转矩密度。永磁同步电动机由于无需激磁绕组,空间结构小,高性能的钕铁硼永磁材料具有高剩余磁感应强度和高矫顽力
13、,从而可提供很高的磁负荷,使电机尺寸缩小。有些并联供磁的电机,甚至可高达1特斯拉以上。传统电机的齿槽结构,约束着磁负荷和电负荷的关系,过高的磁负荷将减小放置绕组的空间,成为实现高功率密度的瓶颈。第二章 永磁同步电动机的运行与控制原理永磁同步电机其本身是一个自控式同步电机,它有定子和转子组成,有的带位置传感器,有的应用场合因安装的不便利及成本上的要求无法安装位置传感器。有的定子是线圈,转子是永磁体,有的转子是线圈,定子是永磁体。但无论哪种方式,电机本身是不能够自己执行旋转控制的,它必须依赖电子换相装置,这也是为什么这种电机需要变频控制的原因。也可以这样说,该种电机系统有电动机,逆变器组成(有的还
14、带位置传感器)。图3.1给出了一个基本系统原理结构图。图3.1永磁同步电机结构原理图2.1 永磁同步电动机的基本组成2.1.1 电动机同感应电机和直流电机相似,永磁同步电动机也是由转子及定子两大部件所构成,三相交流绕组在定子上;永磁体在转子上。关于电机的基础理论知识部分可参考文献。定子: 定子通常也称作电枢,它由定子三相绕组、定子铁芯、机座和端盖等零部件所构成。定子铁芯是由冲压后的硅钢片紧密叠装而成。见图2.2。转子:转子有两种型式的结构,依据定转子之间的气隙分布有隐极式和凸极式之分。见图2.2a为凸极式,从图可看出转子有明显的凸出磁极,且气隙不均匀分布。2.2b为隐极式,转子成圆柱形,均匀分
15、布气隙。对这两种转子需要采用不同的驱动方式,在永磁电机运行原理一节再详细描述。图2.2 定子、转子图电动机转子使用永磁铁励磁,目前常见的有铁氧体或稀土永磁材料。依据转子磁场几何形状的异同,磁场在空间上分布有方波(或梯形波)和正弦波两种。因此反电动势也有两种,根据反电动势的不同分别采用120度的直流方波控制或正弦波控制。2.1.2 转子位置传感器在永磁同步电机中,通常转子位置传感器与电机轴联在一起,用来随时测定转子磁极的位置,为电子换向提供正确的信息。也有例外像洗衣机用的DD电机,往往将HALL安装到定子上,永磁体安装的转子上。定子转子这里其实只是个相对的概念。目前,PMSM系统的位置传感器有很
16、多种方式,像光电编码式、磁敏式、和电磁式等。也有控制精度要求相对较高的场合,采用正弦或余弦旋转变压器等位置传感器的,但无论哪种测量方式本质都是用来测量转子位置信息,只是安装的体积,方便程度,成本及可靠性要求不同而已。通常在家电变频器上,由于要求精度不高,安装体积要小,结构要简单,成本要低等,使得我们只能选择霍尔元件,而且它对周围环境的适应性很强,输出信号的边沿也好。2.1.3 逆变器位置传感器将转子的位置信号电平反馈给控制芯片,控制芯片经过电流采样和数学变换,并根据反馈的位置信息经过闭环运算,重新按新的PWM占空比输出,来触发功率器件(IGBT或MOSFET),实际上逆变器是自控的,由自身运行
17、来保证电机的转速和电流输入频率同步,并避免震荡和失步的发生。2.2永磁同步电动机的工作原理 为方便理解我们先从BLDC电机120度直流方波控制来讲解电机的基本工作原理,而180度控制原理则是在120度方波控制的基础上加入正弦变化控制。换言之,针对电机最优的控制,要看电机的反电动势是方波还是正弦波。方波或梯形波的按直流控制,正弦波的按正弦变化控制。无刷直流(BLDC)电机的基本旋转需依靠转子位置传感器检测的位置信息,然后经过电子换相电路来驱动控制同电枢绕组相连接的各个功率开关器件的关断或导通,从而起到控制绕组的通电状态,并在定子上产生一个连续的旋转磁场,以拖动转子跟着旋转。随着转子的不断旋转,传
18、感器信号被不断的反馈给芯片,主芯片据此来改变电枢绕组的通电状态,使得在每磁极下的绕组中的电流方向相同。因此可以产生恒定转矩,并使BLDC电机连续旋转运行起来。BLDC电机三相绕组主回路有三相全控和三相半控两种。其中三相半控电路简单,一个功率开关驱动一相绕组,每个绕组只保持1/3的通电时间,而另外2/3的时间则保持断开状态,因此并没有被充分利用起来。所以我们通常选择采用三相全控电路,如图2.3所示。图2.3 三相全控电路示意图所谓的120度变频控制,其实是采取两两导通方式的控制策略。所谓两两导通方式指每一时刻仅有两个功率管导通,每1/6周期,开关管换相一次,而每次换相也即PWM调制一个功率管。下
19、面给出一个典型的IGBT或MOSFET的连续通断开关顺序T1T2-T2T3-T3T4-T4T5-T5T6-T6T1-T1T2,按此调制通断即可产生连续的旋转电枢磁势,从而使电机运转。见图2.4a和b。注意这里对120度变频来讲,每一步的PWM的占空比是固定不变的,从而产生直流方波。这种控制方式的特点,简单方便,容易掌握。而180度变频则不仅每1/6周期的PWM占空比不同,而且每一个PWM脉冲的占空比都在调整中,并在每个电周期内使电压按照正弦规律变化,对矢量变频来讲使能电流或磁通按照正弦规律周期变化控制。基于续流二极管方法检测的直流电机控制可参考文献,以及基于三次谐波控制的直流电机可参考相关文献
20、、文献、文献等。ab图2.4 电机旋转示意图2.2.1电枢反应空载时,同步电机气隙中仅有转子磁势存在。而带负载后,除转子磁势之外,还有定子三相电流产生的电枢磁动势。电枢磁动势的存在,会使气隙中磁场的位置和大小发生畸变,这种电枢磁势影响主磁极磁场的现象我们称之为电枢反应。电枢反应除了能使气隙磁场产生畸变之外,还会关系到机电能量转换,还有增磁或去磁作用,这对电机的运行性能会产生很大的影响。该反应的性质取决于,主磁场与电枢磁势在空间上的相对位置,分析表明该位置与负载电流Ia和激磁电动势E0之间的相位差有关,下面将根据它们之间的相位关系分别进行分析。2.2.1.1 与同相位时的电枢反应如图2.5与矢量
21、相加后为气隙合成磁动势,另外,习惯上用d(直轴)来表示转子磁极轴线,用q(交轴)来表示N,S极之间的中线。这样因为交轴磁势的存在,会使合成磁势轴线的位置发生位移,并且幅值也发生一定的变化。图2.5 =0时的电枢反应2.2.1.2 滞后相位90电角度(=90)时的电枢反应如图2.6显然从图中可看出电枢磁势的方向与气隙磁势的方向相反,电枢反应是去磁效果的。图2.6 =90时的电枢反应2.2.1.3 超前相位90电角度(=-90)时的电枢反应如图2.7电枢磁动势。显然可以看出这时电枢反应是增磁作用的,也称之为直轴增磁图2.7 =-90时的电枢反应2.2.1.4 对于=任意角度时的电枢反应此时要分清电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 调速 永磁 同步电动机 电磁 设计
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3984982.html