一元二次方程及解法课时学案.doc
《一元二次方程及解法课时学案.doc》由会员分享,可在线阅读,更多相关《一元二次方程及解法课时学案.doc(17页珍藏版)》请在三一办公上搜索。
1、第四章一元二次方程课时学案(一)4.1一元二次方程【目标导航】1、经历由实际问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界的有效数学模型;2、了解一元二次方程的概念和它的一般形式ax2+bx+c= 0(a0),正确理解和掌握一般形式中的a0,“项”和“系数”等概念;会根据实际问题列一元二次方程;一、磨刀不误砍柴工,上新课之前先来热一下身吧!1、下列方程:(1)x2-1=0; (2)4 x2+y2=0; (3)(x-1)(x-3)=0; (4)xy+1=3 (5)其中,一元二次方程有( )A1个 B2个 C3个 D4个2、一元二次方程(x+1)(3x-2)=10的一般形式是 ,二次项
2、 ,二次项系数 ,一次项 ,一次项系数 ,常数项 。二、牛刀小试正当时,课堂上我们来小试一下身手!3、小区在每两幢楼之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?4、一个数比另一个数大3,且两个数之积为10,求这两个数。5、下列方程中,关于x的一元二次方程是( )A.3(x+1)2= 2(x+1) B.C.ax2+bx+c= 0 D.x2+2x= x2-1 6、把下列方程化成ax2+bx+c= 0的形式,写出a、b、c的值:(1)3x2= 7x-2 (2)3(x-1)2 = 2(4-3x) 7、当m为何值时,关于x的方程(m-2)x2-mx+2=m-
3、x2是关于x的一元二次方程?8、若关于的方程(a-5)xa-3+2x-1=0是一元二次方程,求a的值?三、新知识你都掌握了吗?课后来这里显显身手吧!9、一个正方形的面积的2倍等于15,这个正方形的边长是多少? 10、一块面积为600平方厘米的长方形纸片,把它的一边剪短10厘米,恰好得到一个正方形。求这个正方形的边长。11、判断下列关于x的方程是否为一元二次方程:(1)2(x21)=3y; (2);(3)(x3)2=(x5)2; (4)mx23x2=0;(5)(a21)x2(2a1)x5a =0.12、把下列方程化成一元二次方程的一般形式,并写出它们的二次项系数,一次项系数及常数项。(1)(3x
4、-1)(2x+3)=4; (2)(x+1)(x-2)=-2.13、关于x的方程(2m2+m-3)xm+1-5x+2=13是一元二次方程吗?为什么?4.2一元二次方程的解法(1)第一课时【目标导航】1、了解形如x2=a(a0)或(xh)2= k(k0)的一元二次方程的解法 直接开平方法2、理解直接开平方法与平方根的定义的关系,会用直接开平方法解一元二次方程一、 磨刀不误砍柴工,上新课之前先来热一下身吧!1、3的平方根是 ;0的平方根是 ;-4的平方根 。2、一元二次方程x2=4的解是 。二、牛刀小试正当时,课堂上我们来小试一下身手!3、方程的解为( )A、0 B、1 C、2 D、以上均不对4、已
5、知一元二次方程,若方程有解,则必须( )A、n=0 B、n=0或m,n异号 C、n是m的整数倍 D、m,n同号5、方程(1)x22的解是 ; (2)x2=0的解是 。 6、解下列方程: (1)4x210 ; (2)3x2+3=0 ;(3)(x-1)2 =0 ; (4)(x+4)2 = 9;7、解下列方程:(1)81(x-2)2=16 ; (2)(2x+1)2=25;8、解方程: (1) 4(2x+1)2-36=0 ; (2)。三、新知识你都掌握了吗?课后来这里显显身手吧!9、用直接开平方法解方程(xh)2=k ,方程必须满足的条件是()Ako Bho Chko Dko10、方程(1-x)2=2
6、的根是( )A.-1、3 B.1、-3 C.1-、1+ D.-1、+111、下列解方程的过程中,正确的是( )(1)x2=-2,解方程,得x= (2)(x-2)2=4,解方程,得x-2=2,x=4(3)4(x-1)2=9,解方程,得4(x-1)= 3, x1=;x2=(4)(2x+3)2=25,解方程,得2x+3=5, x1= 1;x2=-412、方程 (3x1)2=5的解是 。13、用直接开平方法解下列方程:(1)4x2=9; (2)(x+2)2=16(3)(2x-1)2=3; (4)3(2x+1)2=124.2一元二次方程的解法(2)第二课时【目标导航】1、经历探究将一元二次方程的一般式转
7、化为(xh)2= k(n0)形式的过程,进一步理解配方法的意义;2、会用配方法解二次项系数为1的一元二次方程,体会转化的思想方法一、磨刀不误砍柴工,上新课之前先来热一下身吧!1、填空:(1)x2+6x+ =(x+ )2;(2)x2-2x+ =(x- )2;(3)x2-5x+ =(x- )2;(4)x2+x+ =(x+ )2;(5)x2+px+ =(x+ )2;2、将方程x2+2x-3=0化为(x+h)2=k的形式为 ;二、牛刀小试正当时,课堂上我们来小试一下身手!3、用配方法解方程x2+4x-2=0时,第一步是 ,第二步是 ,第三步是 ,解是 。4、用配方法解一元二次方程x2+8x+7=0,则
8、方程可变形为( )A.(x-4)2=9 B.(x+4)2=9C.(x-8)2=16 D.(x+8)2=575、已知方程x2-5x+q=0可以配方成(x- )2=的形式,则q的值为( )A. B. C. D. -6、已知方程x2-6x+q=0可以配方成(x-p )2=7的形式,那么q的值是()A.9 B.7 C.2 D.-27、用配方法解下列方程:(1)x2-4x=5; (2)x2-100x-101=0;(3)x2+8x+9=0; (4)y2+2y-4=0;8、试用配方法证明:代数式x2+3x-的值不小于-。三、新知识你都掌握了吗?课后来这里显显身手吧!9、完成下列配方过程:(1)x2+8x+
9、=(x+ )2 (2)x2-x+ =(x- )2 (3)x2+ +4=(x+ )2 (4)x2- + =(x- )210、若x2-mx+ =(x+ )2,则m的值为( ).A. B.- C. D. -11、用配方法解方程x2-x+1=0,正确的解法是( ).A.(x- )2= ,x= B.(x- )2=-,方程无解C.(x- )2= ,x= D.(x- )2=1, x1=;x2=-12、用配方法解下列方程:(1)x2-6x-16=0; (2)x2+3x-2=0;(3)x2+2x-4=0; (4)x2-x-=0.13、已知直角三角形的三边a、b、b,且两直角边a、b满足等式(a2+b2)2-2(
10、a2+b2)-15=0,求斜边c的值。4.2一元二次方程的解法(3)第三课时【目标导航】1、掌握用配方法解一元二次方程的基本步骤和方法2、使学生掌握用配方法解二次项系数不为1的一元二次方程,进一步体会配方法是一种重要的数学方法一、 磨刀不误砍柴工,上新课之前先来热一下身吧!1、填空:(1)x2-x+ =(x- )2, (2)2x2-3x+ =2(x- )2.2、用配方法解一元二次方程2x2-5x-8=0的步骤中第一步是 。二、牛刀小试正当时,课堂上我们来小试一下身手!3、2x2-6x+3=2(x- )2- ;x2+mx+n=(x+ )2+ .4、方程2(x+4)2-10=0的根是 .5、用配方
11、法解方程2x2-4x+3=0,配方正确的是( )A.2x2-4x+4=3+4 B. 2x2-4x+4=-3+4 C.x2-2x+1=+1 D. x2-2x+1=-+1 6、用配方法解下列方程,配方错误的是( ) A.x2+2x-99=0化为(x+1)2=100B.t2-7t-4=0化为(t-)2=C.x2+8x+9=0化为(x+4)2=25D.3x2-4x-2=0化为(x-)2=7、用配方法解下列方程:(1); (2);(3); (4)2x2-4x+1=0。8、试用配方法证明:2x2-x+3的值不小于.三、新知识你都掌握了吗?课后来这里显显身手吧!9、用配方法解方程2y2-y=1时,方程的两边
12、都应加上( )A. B. C. D. 10、a2+b2+2a-4b+5=(a+ )2+(b- )211、用配方法解下列方程:(1)2x2+1=3x; (2)3y2-y-2=0;(3)3x2-4x+1=0; (4)2x2=3-7x.12、已知(a+b)2=17,ab=3.求(a-b)2的值.13、解方程: (x-2)2-4(x-2)-5=04.2一元二次方程的解法(4)第四课时【目标导航】1、体验用配方法推导一元二次方程求根公式的过程,明确运用公式求根的前提条件是b24ac02、会用公式法解一元二次方程一、 磨刀不误砍柴工,上新课之前先来热一下身吧!1、把方程4-x2=3x化为ax2+bx+c=
13、0(a0)形式为 ,b2-4ac= .2、方程x2+x-1=0的根是 。二、牛刀小试正当时,课堂上我们来小试一下身手!3、用公式法解方程x2+4x=2,其中求的b2-4ac的值是( )A.16 B. 4 C. D.644、用公式法解方程x2=-8x-15,其中b2-4ac= ,方程的根是 .。5、用公式法解方程3x2+4=12x,下列代入公式正确的是( )A.x1.2= B. x1.2=C. x1.2= D. x1.2=6、三角形两边长分别是3和5,第三边的长是方程3x2-10x-8=0的根,则此三角形是 三角形.7、如果分式的值为零,那么x= .8、用公式法解下列方程:(1) 3 y2-y-
14、2 = 0 (2) 2 x2+1 =3x(3)4x2-3x-1=x-2 (4)3x(x-3)=2(x-1)(x+1)三、新知识你都掌握了吗?课后来这里显显身手吧!9、把方程(2x-1)(x+3)=x2+1化为ax2 + bx + c = 0的形式,b2-4ac= ,方程的根是 .10、方程(x-1)(x-3)=2的根是( )A. x1=1,x2=3 B.x=22 C.x=2 D.x=-2211、关于x的一元二次方程x2+4x-m=0的一个根是-2,则m= ,方程的另一个根是 .12、若最简二次根式和是同类二次根式,则的值为( )A.9或-1 B.-1 C.1 D.913、用公式法解下列方程:(
15、1)x2-2x-8=0; (2)x2+2x-4=0;(3)2x2-3x-2=0; (4)3x(3x-2)+1=0.4.2一元二次方程的解法(5)第五课时【目标导航】1、用公式法解一元二次方程的过程中,进一步理解代数式b24ac对根的情况的判断作用2、能用b24ac的值判别一元二次方程根的情况一、 磨刀不误砍柴工,上新课之前先来热一下身吧!1、方程3x2+2=4x的判别式b2-4ac= ,所以方程的根的情况是 .2、一元二次方程x2-4x+4=0的根的情况是( )A.有两个不等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定二、牛刀小试正当时,课堂上我们来小试一下身手!3下列方程中,
16、没有实数根的方程式( )A.x2=9 B.4x2=3(4x-1)C.x(x+1)=1 D.2y2+6y+7=04、方程ax2+bx+c=0(a0)有实数根,那么总成立的式子是( )A.b2-4ac0 B. b2-4ac0 C. b2-4ac0 D. b2-4ac05、如果方程9x2-(k+6)x+k+1=0有两个相等的实数根,那么k= .6、不解方程,判别下列方程根的情况.(1)2x2+3x+4=0; (2)2x2-5=6x;(3)4x(x-1)-3=0; (4)x2+5=2x.7、试说明关于x的方程x2+(2k+1)x+k-1=0必定有两个不相等的实数根.8、已知一元二次方程(m-2)2x2
17、+(2m+1)x+1=0有两个不相等的实数根,求的取值范围.三、新知识你都掌握了吗?课后来这里显显身手吧!9、方程(2x+1)(9x+8)=1的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.不能确定10、关于x的方程x2+2x+1=0有两个不相等的实数根,则k( )A.k-1 B.k-1 C.k1 D.k0 11、已知方程x2-mx+n=0有两个相等的实数根,那么符合条件的一组m,n的值可以是m= ,n= .12、不解方程,判断下列方程根的情况:(1) 3x2x1 = 3x (2)5(x21)= 7x (3)3x24x =413、当k为何值时,关于x的方程k
18、x2(2k1)xk3 = 0有两个不相等的实数根?4.2一元二次方程的解法(6)第六课时【目标导航】1、会用因式分解法解一元二次方程,体会“降次”化归的思想方法2、能根据一元二次方程的特征,选择适当的求解方法,体会解决问题的灵活性和多样性一、 磨刀不误砍柴工,上新课之前先来热一下身吧!1、一元二次方程(x-1)(x-2)=0可化为两个一次方程为 和 ,方程的根是 .2、方程3x2=0的根是 ,方程(y-2)2=0的根是 ,方程(x+1)2=4(x+1)的根是 .二、牛刀小试正当时,课堂上我们来小试一下身手!3、已知方程4x2-3x=0,下列说法正确的是( )A.只有一个根x= B.只有一个根x
19、=0C.有两个根x1=0,x2= D.有两个根x1=0,x2=- 4、如果(x-1)(x+2)=0,那么以下结论正确的是( )A.x=1或x=-2 B.必须x=1C.x=2或x=-1 D.必须x=1且x=-25、方程(x+1)2=x+1的正确解法是( )A.化为x+1=1 B.化为(x+1)(x+1-1)=0C.化为x2+3x+2=0 D.化为x+1=06、解方程x(x+1)=2时,要先把方程化为 ;再选择适当的方法求解,得方程的两根为x1= ,x2= .7、用因式分解法解下列方程:(1)x2+16x=0 (2)5x2-10x=-5(3)x(x-3)+x-3=0 (4)2(x-3)2=9-x2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 解法 课时
链接地址:https://www.31ppt.com/p-3984020.html