毕业设计(论文)指纹图像预处理.doc
《毕业设计(论文)指纹图像预处理.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)指纹图像预处理.doc(44页珍藏版)》请在三一办公上搜索。
1、 目 录摘要IIAbstractIII第一章 概述11.1 指纹及其识别11.2 指纹识别算法概述11.3采集指纹图像的技术21.4 指纹预处理31.5 指纹图像预处理过程及一般算法41.6特征拾取、验证和辨识51.7 指纹识别的主要应用51.8本次设计的任务要求7第二章 设计方案821 平滑处理82,11 增强对比度8212 指纹图像规格化和滤波822 锐化处理923 二值化102.4 细化112.5 特征值的提取122.6 伪特征点的去除132.7本章小结14第三章 MATLAB软件设计153.1MATLAB的简介153.2 程序调试173.2.1设计思路173.3图像处理183.4本章小
2、结27结束语28致 谢29参考文献30 摘要 指纹图像预处理是指纹识别的前提,它的好坏直接影响到指纹识别的成败,但由于指纹图像降质带来的困难,并根据指纹图像的特征提出了合理的假设,再根据假设提出了增强指纹图像对比度的算法、提取指纹有效区域的算法、根据方向信息分割图像的算法以及去除图像中气泡噪声的算法,这些算法处理效果好,能有效地解决指纹图像的预处理问题。 用Matlab实现这种方法,既能分步对指纹图像预处理算法进行仿真测试,又可以很直观地看到图像预处理算法的效果。实验证明,用Matlab实现的处理结果比较理想,满足识别的应用性。本文介绍用matlab实现了指纹图像的对比度增强、有效区域的选取、
3、指纹图像的二值化、指纹的特征值提取等。并选取较好的处理步骤和算法参数解决指纹图像预处理的问题。 关键字 指纹图像预处理,二值化,对比度,特征点提取 AbstractFingerprint image pre-processing is a prerequisite of fingerprint recognition, it will have a direct impact on the success of fingerprint recognition, fingerprint image degradation because of the difficulties caused by
4、 the characteristics of fingerprint images based on reasonable assumptions made, and made under the assumption that contrast enhancement algorithm for fingerprint images, fingerprint extraction algorithm effective area, according to the direction of the image segmentation algorithm and the informati
5、on to remove noise in the image bubble algorithms deal with the effect, It can effectively solve the problem of fingerprint image preprocessing. Every part of fingerprint images preprocessing algorithms can be simulated and testd by matlab,and the effect of images processing algorithms can be observ
6、ed intuitivelyThe experimental results show that Matlab can get ideal processing result,and can meet the requirement of recognitionWe introduce the use of matlab to achieve a fingerprint image contrast enhancement, the effective selection of the region, the fingerprint image binarization in this tex
7、t. And to select the best of processing steps and algorithm parameters to solve the fingerprint image pre-processing problems. Key word Fingerprint image preprocessing,Binarization,Contrast, Feature point extraction第一章 概述1.1 指纹及其识别指纹是人类手指末端指腹上由凹凸的皮肤所形成的纹路。指纹能使手在接触物件时增加摩擦力,从而更容易发力及抓紧物件。是人类进化过程式中自然形成的
8、。目前尚未发现有不同的人拥有相同的指纹,所以每个人的指纹也是独一无二1。由于指纹是每个人独有的标记,近几百年来,罪犯在犯案现场留下的指纹,均成为警方追捕疑犯的重要线索2,使得指纹识别技术得到了飞快的发展。现今鉴别指纹方法已经电脑化,使鉴别程序更快更准。 指纹识别技术源于19世纪初,科学家依靠指纹纹脊式样的唯一性和式样终生不改变的特性7,把某个人同他的指纹对应起来,通过采集他的指纹并与预先保存的指纹进行比较来验证其真实身份。随着现代科技的不断进步与广泛应用,可靠高效的个人身份识别变得越来越需要,每个人的指纹具有惟一性,终身不变,难以伪造,因此指纹识别是替代传统身份识别手段的最安全、最可靠、最方便
9、的方法1。指纹图像本身的信息量和数据量是很大的因此直接基于指纹图象的匹配识别是不可取的,而要采用专门高教的指纹识别与处理方法。指纹识别的一般过程是指纹图象预处理、指纹特征提取和特征匹配。但由于采集设备噪声干扰、指纹采集时手指皮肤的干燥程度、汗渍、污渍等原因使待分析的指纹图像噪声较多并对细节点有较强干扰,影响指纹的特征提取16。指纹图像是通过将模拟信号采样量化后,以矩阵形式存入计算机,图像平滑处理指纹图像生成方向数组后,为了消除较强烈的局部噪声干扰,需要对生成的方向数组图像进行预处理。预处理是指纹识别的前提,也是整个工作的基础,因此指纹图象预处理工作的好坏直接关系到指纹特征提取的可行性和准确性。
10、1.2 指纹识别算法概述 指纹是手指末端正面皮肤上凹凸不平产生的纹路,这些纹路就是通常所说的脊和谷4。指纹虽小,但它蕴涵了大量信息。其中,包括纹型在内的全局特征,为指纹的分类提供了基础;同样,指纹还有许多局部特征(根据美国国家标准局规定,包括脊末梢、分岔点、复合特征和未定义四种),称为细节点(Minutia)。不同人的指纹的细节点是唯一的、稳定不变的,这为指纹识别提供了可能。目前,最常用的方法是用FBI提出的指纹细节点模型来做细节匹配2。而最常用的细节特征有脊末梢和分支点两种。 基于点模式匹配的自动指纹识别系统(AFIS)的基本流程一般由图像采集、图像预处理、细节点提取和指纹匹配几部分组成。
11、首先,指纹要通过指纹采集设备(常见的有光学取像设备、超声波扫描取像设备、晶体传感器,现在广泛使用的是晶体传感器)转化为计算机内的数字图像(一般为灰度图)。由于采集过程中难免因手指或仪器的原因而使图像存在较多的噪声,所以为了使图像更清晰以便于后续特征提取,必须对采集到的图像进行增强和滤波,并进一步二值化、细化5。 之后,在细化后的点线图上提取特征值,删除伪特征值,最终得到用于匹配的细节点。采集到的图像细节点与模板中的细节点进行比对,最终完成指纹匹配。各个环节环环相扣,对整个系统都起着十分重要的作用。本文着重研究了图像预处理和细节特征提取这两个关键部分。1.3采集指纹图像的技术获得良好的指纹图像是
12、一个十分复杂的问题。因为用于测量的指纹仅是相当小的一片表皮,所以指纹采集设备应有足够好的分辨率以获得指纹的细节。目前所用的指纹图像采集设备,基本上基于三种技术基础:光学技术、半导体硅技术、超声波技术。1.光学技术10 借助光学技术采集指纹是历史最久远、使用最广泛的技术。将手指放在光学镜片上,手指在内置光源照射下,用棱镜将其投射在电荷耦合器件(CCD)上,进而形成脊线(指纹图像中具有一定宽度和走向的纹线)呈黑色、谷线(纹线之间的凹陷部分)呈白色的数字化的、可被指纹设备算法处理的多灰度指纹图像。 光学的指纹采集设备有明显的优点:它已经过较长时间的应用考验,一定程度上适应温度的变异,较为廉价,可达到
13、500DPI的较高分辨率等。缺点是:由于要求足够长的光程,因此要求足够大的尺寸,而且过分干燥和过分油腻的手指也将使光学指纹产品的效果变坏。 2.硅技术(CMOS技术)10 20世纪90年代后期,基于半导体硅电容效应的技术趋于成熟。硅传感器成为电容的一个极板,手指则是另一极板,利用手指纹线的脊和谷相对于平滑的硅传感器之间的电容差,形成8bit的灰度图像。 硅技术优点是可以在较小的表面上获得比光学技术更好的图像质量,在1cm1.5cm的表面上获得200300线的分辨率(较小的表面也导致成本的下降和能被集成到更小的设备中)。缺点是易受干扰,可靠性相对差。 3.超声波技术10 为克服光学技术设备和硅技
14、术设备的不足,一种新型的超声波指纹采集设备已经出现。其原理是利用超声波具有穿透材料的能力,且随材料的不同产生大小不同的回波(超声波到达不同材质表面时,被吸收、穿透与反射的程度不同),因此,利用皮肤与空气对于声波阻抗的差异,就可以区分指纹脊与谷所在的位置。 超声波技术所使用的超声波频率为1104Hz1109Hz,能量被控制在对人体无损的程度(与医学诊断的强度相同)。超声波技术产品能够达到最好的精度,它对手指和平面的清洁程度要求较低,但其采集时间会明显地长于前述两类产品。 1.4 指纹预处理而在指纹采集过程中,不可避免的会引入各种噪声,如图像中的叉连、断点等,这些噪声对指纹特征信息的提取造成一定的
15、影响,甚至会产生许多伪特征点。因此在提取指纹特征之前,需要对指纹图像进行滤波处理,以去除无用信息,增强有用信息。在得到增强的灰度图后,需要将其进一步二值化,便于后续过程的处理。指纹图像预处理是去除指纹图像中的噪声,使指纹图像清晰、边缘明显,以便于提高提取和存储特征点的准确率。包括指纹区域检测、图像质量判断、方向图和频率估计、图像增强、指纹图像二值化和细化等9。指纹图像获取是通过专门的指纹采集仪可以采集活体指纹图像。目前,指纹采集仪主要有活体光学式、电容式和压感式。对于分辨率和采集面积等技术指标,公安行业已经形成了国际和国内标准,但其他还缺少统一标准。根据采集指纹面积大体可以分为滚动捺印指纹和平
16、面捺印指纹,公安行业普遍采用滚动捺印指纹。另外,也可以通过扫描仪、数字相机等获取指纹图像。指纹图像只有脊和谷之分, 因此完全可以由二值图象来描述,也就是指纹图像的二值化。目前指纹的二值化不外乎两种方法13, 一种是固定门限法, 另一种是动态门限法。固定门限法是对整幅图象用一个灰度门限值, 它对输入图象要求高, 要求整幅图象灰度分布均匀。因此我们把均衡增强后的图象作为它的输入图象。动态门限法是根据不同区域取不同门限值,一般采用平均域值法。它对输入图象照射要求不高。因此我们把方向性滤波后图象作为输入图象。指纹图像的细化是找出指纹纹线的轴心线来代替纹线的过程。目前采用的细化方法就是迭代一一轮廓剥离法
17、。每次垒图象扫描迭代一次8,就剥掉边界象素中不影响连通性的象素,直至纹线宽度为1个象素为止。这样一来,如果被细化的纹线宽度越厚,迭代次数就越多,细化时间就越长,这是我们不希望的。指纹形态特征包括中心(上、下)和三角点(左、右)等,指纹的细节特征点主要包括纹线的起点、终点、结合点和分叉点。将这些点进行自动选择从而完成指纹形态和细节特征提取的工作14。指纹比对是将可以根据指纹的纹形进行粗匹配,进而利用指纹形态和细节特征进行精确匹配,给出两枚指纹的相似性得分。根据应用的不同,对指纹的相似性得分进行排序或给出是否为同一指纹的判决结果。1.5 指纹图像预处理过程及一般算法在指纹图象处理的流程中,预处理是
18、第一个处理环节它对原始灰度图像进行平滑、锐化、增强、二值化等处理,从而使细化、特征抽取等操作能够有效进行。在常见的图象处理技术中,通常按处理目的把预处理过程分为平滑、增强、二值化等步骤。每一步骤都有一些常用算法,如用于平滑的均值滤波法、中值滤波法、迭代加权法等,用于增强的规格化法、自适应算法、拉普拉斯法、Wdlis滤波、Lee滤波等5。经过很长时间的深入研究和反复实践,发现这些常用的算法应用在指纹图象处理中有下列的问题:(1)这些算法对于指纹图象处理的效果并不理想,尽管从视觉上有一定改善,但对于后续的细化和特征抽取处理效果来看,不能有效地提高特征的准确率。(2)不能较好地处理指纹的背景部分,严
19、重影响特征抽取和识别。(3)不能根据指纹图象的质量差别进行特殊处理,通常获得的指纹图象,会有部分区域质量较差,无法抽取特征,在这些算法中,无法找到一个判别标准5。对此,则需要我们对算法原理的进一步了解及改进。方向图算法正是基于以上特点在80年代初期,就已经开始有把方向图引入到指纹图的一些成功的尝试。这时候所使用的方向图是从二值图中直接提取,得到的处理效果并不完全令人满意。从1987年开始,B MMehtre等人成功地得到了在灰度图上直接获取方向图的有效算法,并陆续提出了一系列的预处理方法来处理指纹灰度图15。使用这些算法使指纹图象的处理效果达到了一个新的水平,从而使基于方向图的算法成为指纹图象
20、处理方法研究中的一个热点 在以后的研究中,出现了很多改进和发展,如Kallen Karu等1996 年提出的把方向图用于纹型分类。Linghong等1998年提出的基于方向图的纹线增强等都取得了较好的效果24。这使得方向图成为指纹图象处理技术的关键技术之一。目前的基于方向图的算法中,从灰度图中获取方向图的原理都大体相同,其基本原理是:从图象的灰度矩阵C(I,J)中计算在各个方向上的某个统计量如灰度差或灰度平均等,根据这些统计量在各个方向上的差异,确定在一个小临域内纹线的主方向。针对每象素得到的方向则形成点方向图23。为了保持点方向的有效性使用方便,对点方向在一小块内聚类则得到块方向图。1.6特
21、征拾取、验证和辨识 一个高质量的图像被拾取后,需要许多步骤将它的特征转换到一个复合的模板中,这个过程被称为特征拾取过程,它是手指扫描技术的核心。当一个高质量的图像被拾取后,它必须被转换成一个有用的格式。如果图像是灰度图像,相对较浅的部分会被删除,而相对较深的部分被变成了黑色。脊的像素有58个被缩细到一个像素,这样就能精确定位脊断点和分岔了。微小细节的图像便来自于这个经过处理的图像18。在这一点上,即便是十分精细的图像也存在着变形细节和错误细节,这些变形和错误细节都要被滤除。 除细节的定位和夹角方法的应用以外,也可通过细节的类型和质量来划分细节。这种方法的好处在于检索的速度有了较大的提高,一个显
22、著的、特定的细节,它的惟一性更容易使匹配成功。还有一些生产商采用的方法是模式匹配方法,即通过推断一组特定脊的数据来处理指纹图像。 就应用方法而言,指纹识别技术可分为验证和辨识20。 验证就是通过把一个现场采集到的指纹与一个已经登记的指纹进行一对一的比对来确定身份的过程。指纹以一定的压缩格式存储,并与其姓名或其标识(ID,PIN)联系起来。随后在对比现场,先验证其标识,然后利用系统的指纹与现场采集的指纹比对来证明其标识是合法的。验证其实回答了这样一个问题:他是他自称的这个人吗?这是应用系统中使用得较多的方法。 辨识则是把现场采集到的指纹同指纹数据库中的指纹逐一对比,从中找出与现场指纹相匹配的指纹
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 指纹 图像 预处理
链接地址:https://www.31ppt.com/p-3982570.html