毕业设计(论文)基于框架小波变换的图像融合的算法研究.doc
《毕业设计(论文)基于框架小波变换的图像融合的算法研究.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于框架小波变换的图像融合的算法研究.doc(30页珍藏版)》请在三一办公上搜索。
1、本科毕业设计题目:基于框架小波变换的图像融合的算法研究学 院:信息科学与工程学院专 业:电子信息工程专业学 号:学生姓名:指导教师:日 期:摘 要 图像融合是多传感器数据融合的一个重要分支。其目的是通过对多幅源图像信息的提取与综合,获得对同一场景或目标的更为准确,更为全面、更为可靠的图像描述。目前图像融合技术已经广泛应用于遥感、医学、计算机视觉、军事等方面。图像融合从抽象层次上分为:像素级、特征级和决策级图像融合。本论文主要研究像素级图像融合,研究重点是基于框架小波变换的图像融合。首先介绍了图像融合的提出、国内外发展现状以及其广泛的应用;而后介绍了小波变换的理论,多分辨率分析,基于小波系分析的
2、图像融合,继而实现了框架小波变换的图像融合并在此基础上通过实验结果讨论了最佳分解小波基与最佳融合规则;提出了框架小波的局限性并通过基于区域的图像融合方法加以改进。最终探讨了二者相结合的图形融合的新方法,得到了良好的效果。关键字: 图像融合; 小波变换; 框架小波; 区域变换Abstract One of the very important branch which belong to Multi-sensor data fusion is Image Fusion.The accurate, safe and reliable demonstration of an image is req
3、uired, which can be obtained through the extraction and combination of som Source image information.In this period, Image Fusionis already be used broadly in Rocker, medicine, computer vision,military,etc. Image Fusion can be classify from the abstraction level to Pixel level, feature level and deci
4、sion-making level.Mostly, this thesis is studying the Pixel Level Image Fusion, and the vital point is based on Framework of the wavelet transform.Initially, the propose of Image Fusion, the present situation at home and externally are analyzed, and also the widely usage of it. After that, this thes
5、is shows the theory of Wavelet Transform, multi-resolution analyzing and Image Fusion which based on Wavelets analysis. Then, Framework of wavelet transform fusion is obtained. Consequently, the best way to resolve Wavelet and the best rule to mix them are discussed. Furthermore, this thesis suggest
6、s the disadvantage of Frame wavelet and the method which can brings improvement based on Region fusion. Finally, some favorable effects are achieved by the combination of Both which is a new method of Image Fusion. Key words:Image fusion; wavelet transform; Frame wavelet; regional transformation目 录1
7、 绪论11.1 图像融合11.2 图像融合的研究意义21.3 图像融合的研究现状31.4 本文的主要内容32 小波变换理论52.1 小波变换的发展52.2 连续小波52.3 小波函数62.4 离散小波变换82.5 多分辨率分析92.6 基于小波分解的图像融合103 基于框架小波分析的图像融合133.1 离散框架小波变换133.2 实验结果143.3 最佳小波基的选取153.2.1 小波基的选取依据153.2.2 实验结果163.4 最佳融合规则分析163.4.1 融合规则163.4.2 实验结果174 基于区域图像融合的改进194.1 基于区域图像融合194.1.1特征提取194.1.2实验结
8、果204.2 方法的改进214.3 一致性验证234.4 实验结果235 结束语245.1 本论文所做的主要工作245.2 进一步的研究方向24参考文献25致谢261 绪论1.1 图像融合图像融合是把来自多传感数据的信息互补合成一幅新的图像,提供比原图像更丰富的视觉信息。小波变换的多分辨率分析是当前信号与图像处理领域的研究热点。它可以将原始图像分解成一系列具有不同空问分辨率和频域特性的子图像,充分反映原始图像的局部变化特征,将原始图像分解到一系列频道中,利用分解后的塔形结构,将被融合图像各自携带的特征与细节在多个分解层、多个频带上对不同景像进行融合。1图像融合可以按工作域分为空间域、光谱域、频
9、率域以及尺度域融。图像融合也可以分为三层,即像素级融合、特征级融合和决策级(或判决级)融合。不同级的融合表明融合之前,传感器的数据已经被处理的程度。一个给定的数据融合系统可能涉及所有三个级别数据的输入。像素级图像融合指的是直接对各幅图像的像素点进行信息综合的过程。像素级融合直接在采集到的原始数据层上进行的融合,形成一幅新的图像,这是最低层次的融合。素级融合可用来增加图像中每一个像素的信息内容,为下一步图像处理提供更多的特性信息,可以更容易识别潜在目标。如果参加融合的图像具有不同分辨率,则需要在图像相应区域作映射处理。像素级图像融合一般要求传感器在空间上精确对准,通常将多个传感器置于同一平台上来
10、达到这一要求。局限性在于:要处理的数据量大,实时性差;数据通信量大,抗干能力差。可以用于多源图像复合、图像分析和理解等领域。特征级图像融合是对图像进行特征抽取后,将边沿、形状、轮廓等信息进行综合处的过程。特征级图像融合实际上涉及了图像分割、特征提取和特征层信息融合这几个方的内容。特征级融合先对来自传感器的原始信息进行特征提取,然后对特征信息进行综分析和处理。典型的图像特征提取包括:边界提取、同密度或同景深区域表示等。融合后建立的征可以是各分量特征的合成,也可以是由各分量特征属性组成的完全新型的特征。一个特征的几何形式、方位、位置以及特征的时间内容是特征表示的最重要方面,这些特征可与其他特征对准
11、和融合。特征级融合的传感器对准要求不如像素级要求严格,因此图像感器可分布于不同平台上。进行决策级图像融合之前,每种传感器己独立地完成了决策或分类任务,融合工作质上是做出全局的最优决策。决策级融合是一种高层次的融合,可以为指挥控制决策提依据。决策级图像融合包含了检测、分类、识别和融合这几个过程。决策级融合是三级合的最终结果,是直接针对具体决策目标的,融合结果直接影响决策水平。其中,像素级图像融合作为最基本的融合,它是特征级图像融合和决策级图像融合基础,因此成为目前研究的热点问题之一。这里的研究也是基于像素级图像的融合。1.2 图像融合的研究意义图像工程分为三个层次:图像处理(底层)、图像分析(中
12、层)以及图像理解(高层)。目前图像研究的热点之一就是基于多传感器的图像融合IlJ。在某些情况下,由于受照明、环境条件(如噪声、云、烟雾、雨等)、目标状态(如运动、密集目标、伪装目标等)、目标位置(如远近、障碍物等)以及传感器固有特性等因素的影响,通过单一传感器所获得的图像信息不足以用来对目标或场景进行更好的检测、分析和理解,由此产生了图像融合技术。图像融合是一门综合了传感器技术、信号处理、图像处理和人工智能等的新兴技术。图像融合是由信息融合发展而来的,是多传感器数据融合的一个重要分支。它是一种连接多幅图像的过程,将不同传感器拍摄到的同一景物的不同波长的图像组合在一起,成为一幅合成的信息丰富的图
13、像。对融合后的图像要求为:(1)充分利用各原图像互补信息;(2)更适合人的视觉感受;(3)适合进一步分析的需要;(4)统一编码,压缩数据量,便于通讯等。 图像融合在各领域的具体应用有: (1)军事应用图像融合在军用方面主要是军事目标的定位、识别、跟踪、侦察,隐蔽武器的探测,战场监控,夜间飞行指导等。所使用的图像类型主要有各种卫星图像如SPoT图像、TM图像、雷达图像数据、热红外图像、航片等。 (2)国土资源应用国土资源方面包括土地利用的动态监测,森林、海洋资源调查,环境调查与监测,洪涝灾害的预测与评估等都要用到融合技术。处理的图像数据类型主要有各种卫星图像如TM图像、SPOT图像、sAR图像等
14、。 (3)遥感图像处理这里的遥感图像处理主要是对各种图像资源进行分析。 (4)其它应用图像融合技术还广泛的应用在导航、摄影、医学等领域。在摄影中的图像处理方面,主要是清晰度的处理问题,常用在多焦点情况下。在医学上,主要是对两种不同类型的图像解剖结构图像(CT、MRI、B超等)和功能图像(SPECT、PET等)进行融合。在山东省中青年科学家奖励基金项目创新设计软构件及集成系统和山东省科技攻关项目支持产品创新的可视化协同设计系统研究中使用了融合技术来提取原图像。1.3 图像融合的研究现状信息融合技术最早是被应用在军事领域。1973年,美国国防部在资助的声纳信号理解系统研究中,首先引入了数据融合技术
15、,利用计算机技术对多个连续的声纳信号进行融合处理,实现了对敌方潜艇位罱的自动检测,使得信息融合成为军事中一门非常重要的技术。数据融合可以获得比单个独立的信息源提供的信息更加全面,更少冗余,更加实用的分析处理结果,因此在很多领域获得广泛应用。图像融合技术作为数据融合技术的一个重要的分支,同样也得到了研究者的关注。早期的图像融合方法主要有HIS变换、加权平均、主成分分析(PEA)、高通滤波等,这些方法对参加融合的图像不进行分解或者变换,属于简单的图像融合方法。后来人们又提出了基于金字塔式的分解。随着小波理论的广泛应用,小波变换为图像融合提供了新的工具,使图像融合技术的发展呈现不断上升的势。图像融合
16、技术自从提出到现在已经取得了很大的成绩,各国对于图像融合技术的研究也非常重视。近二十年来,国际上在图像信息融合的不同层次上开展了大量的模型和算法的研究。荚国国防部在不同时期制定的关键战术计划中有相当比例的任务涉及到图像融合技术:美国在2005年研制出基于图像与数据融合技术的覆盖射频、可见光、红外波段公用孔径的有源无源一体化探测器系统。国内对图像融合技术的研究起步较晚,同发达国家相比,水平相差较大。目前上海交通大学,中科院上海技术物理研究所,中科院遥感所等单位正在进行此领域的一些相关研究,各个学校对于图像融合技术也开设了相关的课程和课题。但是,很多国家的研究主要都集中在理论的技术实现上,图像融合
17、方法的研究尚处于初步阶段,许多研究工作仍属于试探性或者仿真行的。许多新的技术,例如人工智能、神经网络等在图像融合方面的应用研究还处于初级阶段,尚没有举世公认的完整的理论和方法。目前对于图像融合的研究主要是在像素级层次上的研究,而特征级和决策级有其显著的优点,且融合层次高于像素级,将来研究的重点将会是特征级和决策级图像信息融合的理论和方法。而且对于图像融合效果的评价目前也没有统一的标准和理论框架,这也是近来研究的一个热点。1.4 本文的主要内容本文研究内容主要是围绕图像像素级融合展开的,针对用到的方法,介绍了小波分析,框架理论,并改进了基于框架小波分析图像融合的算法。对实践结果进行了评价并提出最
18、优分解层数,最佳分解小波基。本论文一共分为五章,具体安排如下:第一章是绪论,主要简单介绍了图像融合,介绍了图像融合的研究意义和研究现状,并简要提出了本文的基本结构。第二章是小波变换,通过傅里叶变换引出小波变换的基本理论,并通过小波变换的应用介绍基于小波变换的图像融合。第三章是基于框架小波分析的图像融合,讲述通过对多聚焦图像进行融合的方法以及结果分析,并提出最佳小波分解层数和最佳分解小波基。对融合规则及融合结果进行评价。第四章是通过聚焦图像的特征,通过基于区域的分析进行图像融合,并针对两者的特点得到两者相结合的图像融合策略。第五章是总结和展望,对本文的工作进行总结,并对以后的研究进行展望。2 小
19、波变换理论2.1 小波变换的发展自从近两百年前Joseph Fourier在研究热力学问题提出Fourier分析以后,长期以来许多数学家一直在寻找更广泛函数空间的性能更好的基底函数族,工程技术领域也一直在寻找更好的时频分析方法,但收获甚微。1984年法国的年轻的地球物理学家Jean Morlet在进行石油勘探的地震数据处理分析时与法国理论物理学家A.Grossman一起提出了小波变换(wavelet transform, WT)的概念并定义了小波函数的伸缩平移系: (2.1)但并没有受到学术界的重视。直到1986年法国大数学家Yves Meyer构造出平方可积空间L2的规范正交基二进制伸缩平移
20、系: (2.2)小波才得到数学界的认可。1987年正在读硕士的Stephane Mallat将自己熟悉的图像处理的塔式算法引入小波分析,提出多分辨分析的概念和构造正交小波的快速算法Mallat算法。1988年法国女科学家Inrid Daubechies构造出具有紧支集的正交小波基Daubechies小波。1990年美籍华裔数学家崔锦泰和武汉大学的数学教授王建忠又构造出基于样条函数的单正交小波函数样条小波。1992年Daubechies在美国费城举行的CBMS-NFN应用数学大会上作了著名的小波十讲Ten Lectures on Wavelets报告,掀起了学习与应用小波的高潮。1994年Wim
21、 Swelden提出了一种不依赖于Fourier变换的新的小波构造方法提升模式(lifting scheme),也叫第二代小波或整数小波变换。22.2 连续小波 设为一平方可积函数,即,若其傅里叶变换满足条件 (2.3)则称为一个基本小波或小波母函数。并称式(2-1)为小波函数的可容许性条件。3将小波母函数进行伸缩平移,设其伸缩因子(尺度因子)为a,平移因子为,平移伸缩后的函数为,则有 (2.4)称为连续小波基函数。 将任意空间中的函数在小波基下展开,称这种展开为函数的连续小波变换(Continue Wavelet Transform,简称WT),表达式为: (2.5)其逆变换为: (2.6)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 基于 框架 变换 图像 融合 算法 研究
链接地址:https://www.31ppt.com/p-3981398.html