毕业设计(论文)基于单片机的超声波测距系统设计 .doc
《毕业设计(论文)基于单片机的超声波测距系统设计 .doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于单片机的超声波测距系统设计 .doc(24页珍藏版)》请在三一办公上搜索。
1、基于单片机的超声波测距系统设计前言随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。本设计就是本着这个宗旨出发,利用超声波的特性来为我们服务。由于超声波指向性强,因而常于距离的测量。超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离s,即:s=vt/2 。这就是所谓的时间差测距法。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业
2、实用的要求, 随着科学技术的快速发展,超声波将的应用将越来越广。但就目前技术水平来说,人们可以具体利用的超声波技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。超声波测距技术在社会生活中已有广泛的应用如汽车倒车雷达等,它们测距精度一般较低。目前对超声波高精度测距系统的需求越来越大。展望未来,超声波作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。未来的超声波测距技术将朝着更高精度,更大应用范围,更稳定方向发展,死角问题也能得以解决。1 超声波测距的基本概述人耳能听到的声音是由于物体振动产生的,它的
3、频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。超声波是在一种弹性介质中的机械振荡,它有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度受很多因素的影响。在空气中传播超声波,其频率较低、衰减较快。超声波波长短,绕射现象小,其方向性好,而且穿透能力很强,且碰到杂质或分界面就会有显著的反射现象。这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像等技术。1.1 超声波的波形 纵波是质点振动方向和超声波传播方向一致的波,在固体、液体和气体中传播如图1.1-1所示: 横波是质点的振动方
4、向垂直于传播方向的波,它只能在固体中传播。其传播方向如图1.1-2所示: 图1.1-1 纵波 图1.1-2 横波 表面波是质点的振动方式介于纵波和横波之间沿着固体表面传播的波,其振幅大小随着传播深度的增加而迅速衰减。表面波只能沿着固体表面传播,其质点运动轨迹为椭圆形,且椭圆的长轴垂直于传播方向,而短轴平行于传播方向。传播方向如图1.1.1-3所示:图1.1.1-3 表面波1.2 超声波的特性 超声波在介质传播过程中,会发生衰减和散射。由于受介质和杂质的阻碍或吸收,其强度会产生衰减。尤其是超声波测距仪,对所接受的声波强度都有一定要求,所以都要对各种衰减进行抑制。 超声波声束能集中在特定的方向上,
5、具有良好的指向性。超声波可以在固体、液体和气体中以不同的速度进行传播,其速度受介质温度、压力等因素的影响,但在相同外部环境下,超声波在同一介质中的传播速度是一常数。这是超声仪表进行测距的基础。 超声波在异种介质的界面上会产生反射、叠加等现象。利用超声波在异质界面上发生的反射特性,获得从界面反射回来的反射波,通过内部的电路处理从而达到探测距离的目的。1.3 超声波测距工作原理声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。 超声波是指振动频率大于20000Hz以
6、上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性。超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即: s=vt/2 (1.3-1)这就是所谓的时间差测距
7、法。采用超声波测量大气中的地面距离,是近代电子技术发展才获得正式应用的技术,由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,在较恶劣的环境(如含粉尘)具有一定的适应能力。因此,用途极度广泛。例如:测绘地形图,建造房屋、桥梁、道路、开挖矿山、油井等,利用超声波测量地面距离的方法,是利用光电技术实现的,超声测距仪的优点是:仪器造价比光波测距仪低,省力、操作方便。由于是利用超声波测距,要测量预期的距离,所以产生的超声波要有一定的功率和合理的频率才能达到预定的传播距离,同时这是得到足够的回波功率的必要条件,只有的得到足够的回波频率,接收电路才能检测到回波信号和防止外界干扰信号的干扰。
8、经分析和大量实验表明,频率为40KHz左右的超声波在空气中传播效果最佳,同时为了处理方便,发射的超声波被调制成具有一定间隔的调制脉冲波信号。1.4 超声波传感器原理与选型4、5超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23-25kHz及40-45kHz。这类传感器适用于测距、遥控、防盗等用途。若对发送传感
9、器内谐振频率为40kHz的压电陶瓷片(双晶振子)施加40kHz高频电压,则压电陶瓷片就根据所加高频电压极性伸长与缩短,于是发送40kHz频率的超声波,其超声波以疏密形式传播( 疏密程度可由控制电路调制),并传给波接收器。接收器是利用压力传感器所采用的压电效应的原理,即在压电元件上施加压力,使压电元件发生应变,则产生一面为“+”极,另一面为“-”极的40kHz正弦电压。因该高频电压幅值较小,还必须进行放大。常用的超声波传感器有T/R-40-60,T/R-40-12等(其中T表示发送,R表示接收,40表示频率为40kHZ,16及12表示其外径尺寸,以毫米计)。本设计选用T/R-40-12 超声波传
10、感器。1.5 温度传感器原理与选型本系统选用DS18B20温度传感器作为误差补偿装置。DS18B20是美国DALLAS半导体公司生产的1WIRE数字温度传感器,它可实现数字化输出和测试,并且有控制功能强、传输距离远、抗干扰能力强、微功耗等特点。DS18B20的主要特性:适应电压范围更宽,电压范围3.05.5V,在寄生电源方式下可由数据线供电。独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。DS18B20在使用中不需要任何外围元件,全部传感元件
11、及转换电路集成在形如一只三极管的集成电路内。温度范围55125,在-10+85时精度为0.5。可编程的分辨率为912位,对应的可分辨温度分别为0.5、0.25、0.125和0.0625,可实现高精度测温。在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快。测量结果直接输出数字温度信号,以一线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。2 超声波测距系统硬件设计2.1 超声波测距系统基本框图由单片机发出40kHz的方波信号进入超声波发射电路,
12、经LM386功率放大芯片放大后进入超声波发射头。超声波发射头发射的超声波在空气中传播一段时间后经前方被检测物体反射回来,由超声波接收头接收,超声波电路中的20106接收芯片对信号放大整形,超声波接收电路接收回波后发出一个下拉电平使单片机进入中断程序,在中断程序中,单片机从温度检测电路读取数值并换算成当前温度下的声速,应用时差法计算所检测的距离,最后所有的数据都在LCD显示电路上显示。超声波测距系统基本框图如图2.1-1所示: 单片机控制器超声波发射电路超声波接收电路LCD显示电路温度检测电路图2.1-1 超声波测距系统基本框图2.2 超声波测距的主控芯片本设计采用的AT89C51是美国ATME
13、L公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。单片机是依赖程序来运行的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。只因为单片机的通过你编写的程序可以实现高智能
14、,高效率,以及高可靠性!2.2.1 AT89C51功能特性及性能参数AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个IO 口线,两个16位定时计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。其参数性能如下: 与MCS-51产品指令系统完全兼容 4k字节可重擦写Flash闪
15、速存储器 1000次擦写周期 全静态操作:0Hz24MHz 三级加密程序存储器 1288字节内部RAM 32个可编程IO口线 2个16位定时计数器 6个中断源 可编程串行UART通道 低功耗空闲和掉电模式2.2.2 AT89C51的引脚功能说明单片机AT89C51的引脚图如图2.2.2-1所示: 图2.2.2-1 单片机AT89C51的引脚图各引脚功能介绍: Vcc:电源电压;GND:地 P0口:P0 口是一组8 位漏极开路型双向IO 口,也即地址数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作高阻抗输入端用。在访问外部数据存储器或程序存储器时,
16、这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在FIash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 P1口: P1是一个带内部上拉电阻的8位双向IO口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。FIash编程和程序校验期间,P1接收低8位地址。 P2口:P2是一个带有内部上拉电阻的8位双向IO口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑
17、门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVXDPTR指令)时,P2口送出高8位地址数据。在访问8 位地址的外部数据存储器(如执行MOVXRI 指令)时,P2 口线上的内容(也即特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2亦接收高位地址和其它控制信号。 P3口:P3口是一组带有内部上拉电阻的8 位双向IO 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个T
18、TL逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的P3 口将用上拉电阻输出电流。P3口除了作为一般的IO口线外,更重要的用途是它的第二功能。P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。 RST 复位输入:当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。 ALEPROG: 当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部存储器,ALE 仍以时钟振荡频率的l6 输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据
19、存储器时将跳过一个ALE脉冲。对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的DO 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX和MOVC指令ALE才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。 PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C51 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的PSEN信号不出现。 EA VPP 外部访问允许:欲使CPU仅访问外部
20、程序存储器(地址为0000HFFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接VCC端),CPU则执行内部程序存储器中的指令。Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。 XTAL1: 振荡器反相放大器的及内部时钟发生器的输入端。 XTAL2 :振荡器反相放大器的输出端。2.3 超声波发射电路设计6由于从单片里发出的40KHz脉冲信号的功率较低,不能直接驱动发射换能器,因而需要一个放大电路将脉冲信号放大后再送至发射换能器,驱动其发出与驱动信号同频率的超
21、声波,所以发射电路的主要功能就是放大,发射电路如图5-2所示。为增大超声波的发射频率,本设计利用了单运放LM386,LM386是专为低损耗电源所设计的功率放大器集成电路。它的内建增益为20,透过pin 1和pin8脚位间电容的搭配,增益最高可达200。LM386可使用电池为供应电源,输入电压范围可由4V12V,无作动时仅消耗4mA电流,且失真小。发射距离可达3m。利用LM386的驱动放大功能将单片机产生的40kHz方波放大输出。驱动压电式超声波发射头发射超声波。超声波发射电路如图2.3-1所示: 图2.3-1 超声波发射电路2.4 超声波检测接收电路设计7检测接收电路中的CX20106A芯片是
22、一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38kHz 与测距超声波频率40kHz 较为接近,可以利用它作为超声波检测电路,超声波接收头将机械能转换为电信号。但这个电信号非常微弱,必须经过放大,CX20106A芯片完成放大调制的功能。实验证明,CX20106A芯片具有很高的灵敏度和较强的抗干扰能力。内部电路由前置放大器、自动偏置电平控制电路、限幅放大器、带通滤波器、峰值检波器和整形输出电路组成。接收的回波信号先经过前置放大器和限幅放大器,将信号调整到合适的幅值;再经过带通滤波器滤波得到有用信号,滤除干扰信号;最后由峰值检波器和整形电路输出到锁相环路,实
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计论文基于单片机的超声波测距系统设计 毕业设计 论文 基于 单片机 超声波 测距 系统 设计
链接地址:https://www.31ppt.com/p-3981170.html