2021年中考数学-专题汇编:二次函数的实际应用(含答案).doc
《2021年中考数学-专题汇编:二次函数的实际应用(含答案).doc》由会员分享,可在线阅读,更多相关《2021年中考数学-专题汇编:二次函数的实际应用(含答案).doc(13页珍藏版)》请在三一办公上搜索。
1、2021中考数学 专题汇编:二次函数的实际应用一、选择题(本大题共10道小题)1. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A130元/个 B120元/个 C110元/个 D100元/个 2. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式yn212n11,则企业停产的月份为()A1月和11月 B1月、11月和12月C1月 D1月至11月 3. 北中环桥是省城太原的一座跨汾河大桥,它由五个高度不同,跨径也不同
2、的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图所示,此钢拱(近似看成二次函数的图象抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数表达式为()A.y=x2B.y=-x2C.y=x2D.y=-x2 4. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中C=120.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 m2C.24 m2D. m2 5. 从地面竖直
3、向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位: s)之间的函数关系如图所示.下列结论:小球在空中经过的路程是40 m;小球抛出3秒后,速度越来越快;小球抛出3秒时速度为0;小球的高度h=30 m时,t=1.5 s.其中正确的是()A.B.C.D. 6. 某公园草坪的防护栏是由100段形状相同的抛物线组成的为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A50 m B100 m C160 m D200 m 7. 如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=
4、4x-x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距O点水平距离为3 mB.小球距O点水平距离超过4 m时呈下降趋势C.小球落地点距O点水平距离为7 mD.斜坡的坡度为12 8. 中环桥是省城太原的一座跨汾河大桥(如图),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连最高的钢拱如图所示,此钢拱(近似看成二次函数的图象抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系则
5、此抛物线形钢拱的函数解析式为()Ayx2 Byx2Cyx2 Dyx2 9. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y4xx2刻画,斜坡可以用一次函数yx刻画,下列结论错误的是()A当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 m B小球距点O的水平距离超过4 m后呈下降趋势C小球落地点距点O的水平距离为7 m D小球距点O的水平距离为2.5 m和5.5 m时的高度相同 10. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线yx2bxc的一部分(如图),其中出球点B离地面点O的距离是1 m,球落地点A到点O的距离是4 m,那么这条抛物线的解析式是()Ay
6、x2x1Byx2x1Cyx2x1 Dyx2x1二、填空题(本大题共8道小题)11. 某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a元,则可卖出(35010a)件但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为_元 12. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大. 13. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20x30,且x为整数)出售,则可卖出(30x)件若
7、要使销售利润最大,则每件的售价应为_元 14. 某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大. 15. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s60tt2,则飞机着落后滑行的最长时间为_秒 16. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为_m2. 17. 如图所示是一座抛物线形拱
8、桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系若选取点A为坐标原点时的抛物线解析式为y(x6)24,则选取点B为坐标原点时的抛物线解析式为_ 18. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB36 m,D,E为桥拱底部的两点,且DEAB,点E到直线AB的距离为7 m,则DE的长为_m. 三、解答题(本大题共4道小题)19. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506
9、080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量(售价-进价)(1)求y关于x的函数解析式(不要求写出自变量的取值范围);该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值. 20. 把一个足球垂直于水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米),适用公式h20t5t2(0t4)(1)当t3时,求足球距离地面的高度
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年中 数学 专题 汇编 二次 函数 实际 应用 答案
链接地址:https://www.31ppt.com/p-3980262.html