毕业设计(论文)基于PLC的温度控制系统设计.doc
《毕业设计(论文)基于PLC的温度控制系统设计.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于PLC的温度控制系统设计.doc(53页珍藏版)》请在三一办公上搜索。
1、内蒙古科技大学本科生毕业设计说明书(毕业论文)题 目:基于PLC的温度控制系统设计学生姓名:学 号:专 业:自动化班 级:自06-3班指导教师:基于PLC的温度控制系统设计摘要温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。加热炉温度控制在许多领域中得到广泛的应用。一般来说,单片机在数据采集、数据处理等方面占据优势,其通用性和适应性较强。 然而单片机控制的DDC系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC在这方面却是公认的最佳选择。加热炉温度是一个大惯性系统,一般采用PID调节进行控制。随着PLC功能的扩充
2、在许多PLC控制器中都扩充了PID控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。本设计是用电烤箱来模拟加热炉,利用西门子S7-200 PLC控制电烤箱温度的控制系统。首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-200 PLC和系统硬件及软件的具体设计过程。关键词:西门子S7-200 PLC、EM235、PID、温度传感器、固态继电器PLC-based temperature control system designAbstractTemperature control system has been widely used in t
3、he industry controlled field, as the temperature control system of boilers and welding machines in steel works、chemical plant、heat-engine plant etc. Heating-stove temperature control has also been applied wildly in all kinds of fields. In general, the MCU takes advantage of their strong versatility
4、and adaptability in data collection, data processing and so on. Yet the hardware and software design of DDC system controlled by MCU is somewhat complicated, its not an advantage especially related to logic control, however it is accepted as the best choice when mentioned to PLC. The furnace tempera
5、ture of heating-stove is a large inertia system, so generally using PID adjusting to control. With the expanding of PLC function, the control function in many PLC controllers has been expanded. Therefore it is more reasonable to apply PLC controlling in the applicable fields where logical control an
6、d PID control blend together. The design is to come to simulate Heating-stove, using Siemens S7-200 PLC to control the electric oven temperature control system. In the first place this paper presents the working principles of the temperature control system and the elements of this system. Then it in
7、troduces Siemens S7-200 PLC and the specific design procedures of the hardware and the software.Key words:Siemens S7-200 PLC、EM235、PID、temperature pickup、solid state relay 目录摘要IAbstractII第一章 绪论11.1 系统设计背景11.2 系统工作原理11.3 技术综述2第二章 系统设计32.1 闭环控制系统特点32.2 PID控制原理32.2.1 PID控制器基本概念32.2.2 PID控制器的参数整定42.3 S7
8、-200 PLC在PID闭环控制系统中的应用62.3.1 PLC实现PID控制的方式72.3.2 PLC的PID控制器的实现72.3.3 PID指令及其回路表102.4 系统组成11第三章 硬件设计123.1 PLC基本概述123.2 PLC的组成及功能133.3 PLC的工作方式与运行框图163.4 PLC的工作过程183.5 S7-200 PLC简介193.5.1 S7-200 PLC组成原理及技术指标193.5.2 CPU224及EM235203.5.3 S7-200网络213.6 固态继电器223.7 温度传感器27第四章 软件设计294.1 S7-200 CPU的PID控制294.1
9、.1 PID算法在S7-200中的实现294.1.2 PID控制器的调试304.2 PID Wizard - PID 向导314.3 系统程序流程图404.4 变量分配表414.5 温控曲线41结束语44参考文献45附录46致谢49第一章 绪论1.1 系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金机械食品化工等各类工业生产过程中广泛使用的各种加热炉热处理炉反应炉,对工件的处理均需要对温度进行控制。因此,在工业生产和家居生活过程中常需对温度进行检测和监控。由于许多实践现场对温度的影响是多方面的,使得温度的控制比较复杂,传统的加热
10、炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生的PLC控制技术所取代。而PLC本身优异的性能使基于PLC控制的温度控制系统变的经济高效稳定且维护方便。这种温度控制系统对改造传统的继电器控制系统有普遍性意义。本课题类型属于工程设计型题目,用电烤箱来模拟加热炉,通过本设计可以熟悉并掌握西门子S7-200 PLC的原理与功能以及它的编程语言,以自动控制理论为指导思想,解决工业生产及生活中温度控制的问题。1.2 系统工作原理电烤箱温
11、度控制系统基本构成如图1.1所示,它由PLC主控系统、固态继电器、温度传感器、电烤箱等4个部分组成。图1.1 电烤箱温度控制系统方框图电烤箱温度控制实现过程是:首先温度传感器将电烤箱的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-200 PLC可识别的数字量,然后PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使电烤箱开始加热或停止加热,既电烤箱温度控制得到实现。其中PLC主控系统为电烤箱温度控制系统的核心部分起着重要作用。1.3 技术综述自70年代以来,由于工业过程控
12、制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。在这方面以日本、美国、德国、瑞典等国的技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表,在各行业广泛应用。目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。 温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。成熟产品主要以“点位”控制及常规的
13、PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。现在,我国在温度等控制仪表业与国外还有着一定的差距。温度控制系统大致可分别用3种方式实现,一种是用仪器仪表来控制温度,这种方法控制的精度不高。另一种是基于单片机进行PID控制,然而单片机控制的DDC系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC 在这方面却是公认的最佳选择。随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能。因此本设计选用西门子S7-200 PLC来控制电烤
14、箱的温度。本章小结:本章从总体上介绍了本设计的设计背景以及系统的工作原理,并且简单介绍了目前国内外本领域的技术水平。第二章 系统设计2.1 闭环控制系统特点控制系统一般包括开环控制系统和闭环控制系统。开环控制系统(Open-loop Control System)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响,在这种控制系统中,不依赖将被控制量反送回来以形成任何闭环回路。闭环控制系统(Closed-loop Control System)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与
15、系统给定值信号相反,则称为负反馈( Negative Feedback);若极性相同,则称为正反馈。一般闭环控制系统均采用负反馈,又称负反馈控制系统。可见,闭环控制系统性能远优于开环控制系统。2.2 PID控制原理2.2.1 PID控制器基本概念在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最广泛的一种自动控制器。它具有原理简单,易于实现,适用面广,控制参数相互独立,参数选定比较简单,调整方便等优点;而且在理论上可以证明,对于过程控制的典型对象“一阶滞后纯滞后”与“二阶滞后纯滞后”的控制对象,PID控制器是一种最优控制。PID调节规律是
16、连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(如可为PI调节,PD调节等)。长期以来,PID控制器被广大科技人员及现场操作人员所采用,并积累了大量的经验。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量来进行控制。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时、控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合采用PID控制技术。(1)比例(P)控制比例控制是一种最简单的控制方式。其控制器的
17、输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。(2)积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差的运算取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大,使稳态误差进一步减小,直到等于零。因此,采用比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。(3)微分(D)控制在微分控制中,控制器的输出与输入误差信号的微
18、分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大的惯性组件或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态
19、特性。2.2.2 PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性,确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有如下两大类:一是理论计算整定法。它主要依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接使用,还必须通过工程实际进行调整和修改。二是工程整定法。它主要依赖于工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。这三种方法各有其特点,其共同点都是通过试验,然后
20、按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后的调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。PID控制器的数字化增量式数字PID控制算式为:(2-1)其中,, ,T为采样周期。比例调节器对于偏差是及时反应的,一旦偏差产生,调节器立即产生控制作用,使被控量朝着减小偏差的方向变化,控制作用的强弱
21、取决于比例系数。比例调节器虽然简单快速,但是对于具有自平衡性的控制对象存在静差。加大比例系数可以减小静差,但过大的比例系数可能导致系统动荡而处于闭环不稳定状态。为了消除比例调节器中的残存的静差,可以在比例调节的基础上加入积分调节。积分时间大,则积分作用弱,反之积分作用强。积分时间越大,消除静差越慢,但可以减小超调,提高系统的稳定性。但它的不足之处在于积分作用存在滞后特性,积分控制作用太强会使控制的动态性能变差,以至于使系统不稳定。 加入积分调节环节,虽然减小了静差,但是降低了系统的响应速度。加入微分环节,能敏感出误差的变化趋势,将有助于减小超调,克服系统震荡,使系统趋于稳定,能改善系统的动态性
22、能。它的缺点是对干扰同样敏感,使系统抑制干扰的能力降低。根据不同的控制对象适当地整定PID的三个参数,可以获得比较满意的控制效果。实践证明,这种参数整定的过程,实际上是对比例、积分、微分三部分控制作用的折衷。但是,PID本质上是一种线性控制器,并且上面讨论时是忽略了纯滞后时间的,实际系统中,如果(是纯滞后时间,是系统总的惯性时间常数),用PID控制器的效果就不理想了。而实际工业对象具有较大的惯性和纯滞后特性,以及其动力学系统的内部不确定性和外部干扰的不确定性,所有这些都给PID控制带来了困难和复杂性。一般来说,要获得满意的控制性能,单纯采用线性控制方式还是不够的,还必须引进一些非线性控制方式,
23、采取灵活有效的手段,如变增益、智能积分、智能采样等多种途径,主要依靠专家经验、启发式直观判断、直觉推理等智能控制方法,有利于解决系统控制中的稳定性和准确性的矛盾。可以说智能PID赋予传统PID以新的生命。PID控制器的主要优点PID控制器成为应用最广泛的控制器,它具有以下优点:(1)PID算法蕴涵了动态控制过程中过去、现在、将来的主要信息,而且其配置几乎最优。其中,比例(P)代表了当前的信息,起纠正偏差的作用,使过程反应迅速。积分(I)代表了过去积累的信息,它能消除静差,改善系统的静态特性。微分(D)在信号变化时有超前控制作用,代表将来的信息。在过程开始时强迫过程进行,过程结束时减小超调,克服
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 基于 PLC 温度 控制系统 设计
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3979747.html