毕业设计论文基于PLC的恒压供水系统设计.doc
《毕业设计论文基于PLC的恒压供水系统设计.doc》由会员分享,可在线阅读,更多相关《毕业设计论文基于PLC的恒压供水系统设计.doc(34页珍藏版)》请在三一办公上搜索。
1、ANYANG INSTITUTE OF TECHNOLOGY 科 毕 业 论 文 基于PLC的恒压供水系统设计系(院)名称: 电子信息与电气工程学院 专业班级: 09级电气自动化技术(2)班 学生姓名: 学 号: 指导教师姓名: 指导教师职称: 2012 年 5 月基于PLC恒压供水系统设计 摘要:随着经济的不断发展,人们对供水质量和供水系统可靠性的要求不断提高;利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。变频调速恒压供水系统对工业用水和居民生活用水都具有重大意义。因此开发一种新型的、自动化程度高、可靠性高、节能效果好的供水系统迫
2、在眉睫。本设计是针对居民生活用水而设计的。由变频器、PLC、PID调节器组成控制系统,调节水泵的输出流量。电动机泵组由三台水泵组成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组的速度和切换,使系统运行在最合理状态,保证按需供水。变频器为主体构成的恒压供水系统不仅能够最大程度满足需要,也能提高整个系统的效率,延长系统寿命、节约能源、而且能够构成复杂的功能强大的供水系统。本设计采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力凋节。经过PID运算,通过PLC控制变频与工频切换,实现闭环自动调节恒压变频供水。运行结果表明,该系统具有压力稳定,结构简单
3、,工作可靠等特点。 关键词:变频调速 恒压供水 PID调节 PLC 目录引言1第1章 恒压供水系统的设计方案21.1恒压供水系统的方案选择21.2恒压供水系统的控制原理41.3 系统的结构与控制要求5第2章 恒压供水系统的硬件设计62.1变频器的设计62.2 PID控制器的设计72.2.1 PID控制器的选择72.3 PLC的设计92.3.1 PLC系统选型92.3.2 I/O分配102.4 PLC控制系统原理图112.4.1主电路图112.4.2控制电路图122.4.3 PLC硬件结构图142.4.4 扩展模块的外围接线142.5扩展单元功能及用途15第3章 系统的软件设计与调试173.1
4、系统程序设计及流程图173.1.1程序设计173.1.2系统流程图183.2 相关控制功能的实现203.3 故障诊断与报警方式的输出213.4 PLC系统的调试21结论23致 谢24参 考 文 献25附录A.26附录B27引言进几十年来变频调速技术在工业化国家已开始了规模的应用。80年代末,我国的民用及工业建筑电气设计等领域也开始使用变频调速技术。变频调速与传统(如直流电机调速)比较,具有很大的优越性:整个系统体积小,重量轻,控制精度高,保护功能完善,操作过程简便、可靠性高、通用性强,尤其是该技术用于一些高耗能设备的控制上,具有非常显著的节能效果:通过对用电设备进行变频调速技术改造,可使总耗电
5、量减少30%40%,节能的量级产生了一种飞跃。 变频供水是从20世纪90年代迅速发展起来的一项供水应用新技术,主要用于水厂、各种类型的生产厂、高层楼宇的供水系统,具有水压恒定、噪声小、节能等一系列优点。由于供水系统在运行中流量和水压在一天中的变化较大,如果使用传统的电气控制,设备启动频繁,电流和水压冲击严重及设备维修量大,而且对供水压力的控制来说也很麻烦,总得人工对水泵进行启停及水泵的出口阀进行开关操作,在浪费大,最终还影响供水质量,供水成本也高,而变频供水的出现是这些问题迎刃而解。作为应用现代电力电子器件与微计算机技术有机结合的交流变频调速装置,随着产品的开发创新和推广应用,使得交流异步电动
6、机调速领域发生一场巨大的技术革命。当前自动恒压供水系统应用的电动机调速装置均采用交流变频技术,而系统的控制装置采用PLC控制器,因PLC不仅可实现泵组、阀门的逻辑控制,并可完成系统的数字PID调节功能,可对系统的各种运行参数、控制点的实时监控,并完成系统运行工况的CRT画面显示、故障报警及打印报表等功能。自动恒压供水系统具有标准的通讯接口可与城市供水系统的上位机联网,实现城区供水系统的优化控制,为城市供水系统提供了现代化的调度、管理、监控及经济运行的手段。第1章 恒压供水系统的设计方案1.1恒压供水系统的方案选择 本文设计的是生活/消防双恒压供水系统,主要由变频器、可编程控制器、压力传感器、水
7、泵组成。本文研究的目标是对恒压控制技术给予提升,使系统的稳定性和节能效果进一步提高,操作更加简捷,故障报警及时迅速。在生活供水和消防供水的管网系统中,由于管网是封闭的,泵站供水的流量是由用水量决定的,泵站供水的压力以满足管网中压力最不利的压力损失。由流体力学可知,水泵给管网供水时,水泵的输出功率P与管网的水压H及出水流量Q的乘积成正比;水泵的转速n与出水流量Q成正比;管网的水压H与出水流量Q的平方成正比。由上述关系有,水泵的输出功率P与转速n三次方成正比,即: (2.1) (2.2) (2.3) (2.4)式中k、k1、k2、k3为比例常数。 图1.1 管网及水泵的运行特性曲线因此供水系统的设
8、定压力应该根据流量的变化而不断修正设定值,这种恒压供水技术称为变量恒压供水,即供水系统最不利点的供水压力为恒值而泵站出口总管压力连续可调。根据该供水系统的设备配置情况及供水的特点做如下方案如图1.2:该供水系统的控制核心采用PLC,配置常规电气配电控制系统。图1.2 供水系统的控制图从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:(l) 执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作
9、状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。管网水压信号反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。此信号是模拟信号,读入PLC时,需进行A/D转换。另外为加强系统的可靠性,还需对供水的上限压力和下限压力用电接点压力表进行检测,检测结果可以送给PLC,作为数字量输入;水池水位信号反映水泵的进水水源是否充足。信号有效时,控制系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。此信号来自安装于水池中的液位传感器;报警信号反映系统是否正常运行,
10、水泵电机是否过载、变频器是否有异常,该信号为开关量信号。(3) 控制机构:供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。供水控制器是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵机组)进行控制;变频器是对水泵进行转速控制的单元,其跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。根据水泵机组中水泵被变频器拖动的情况不同,变频器有两种工作方式即变频循环式和变频固定式
11、,变频循环式即变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统先将变频器从该水泵电机中脱出,将该泵切换为工频的同时用变频去拖动另一台水泵电机;变频固定式是变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统直接启动另一台恒速水泵,变频器不做切换。作为一个控制系统,报警是必不可少的重要组成部分。由于本系统能适用于不同的供水领域,所以为了保证系统安全、可靠、平稳的运行,防止因电机过载、变频器报警、电网过大波动、供水水源中断造成故障,因此系统必须要对各种报警量进行监测,由PLC
12、判断报警类别,进行显示和保护动作控制,以免造成不必要的损失。1.2恒压供水系统的控制原理变频恒压供水系统实现恒压的工作过程和原理如图1.3:安装于供水母管和主管道上的压力传感变送器将供水管网压力转换成420mA(020mA、010V等)的标准电信号,送到PID调节器(或过程控制器、PLC、DCS等),经过运算处理后仍以标准信号的形式送到变频器并作为变频器调速的给定信号,也可将压力传感变送器的标准信号直接送到具有内置PID调节功能的变频器;变频器根据调速的给定信号或通过对压力传感变送器的标准点信号进行运算处理后,决定其输出频率实现对驱动电机的转速调节,从而实现对供水的水量及供水压力调节,最终实现
13、了对供水管网的压力调节。 图1.3 自动恒压供水系统原理图 1.3 系统的结构与控制要求 PLC控制的恒压供水泵站如图1.4所示,市网自来水用高低水位控制器EQ控制注水阀YV1,自动把水注满蓄水池。只要水位低于高水位,则自动往水箱注水。水池的低水位信号也直接送给PLC做为低水位报警信号。为了保证供水的连续性,水位上下传感器高低距离较小。生活用水和消防用水的多少,按一定的控制逻辑运行,维持生活用水低恒压。当有火灾发生时,电磁阀YV2得电,关闭生活用水管网,三台泵供消防用水使用,并维持消防用水的高恒压值。 恒压供水的主要目标是保持管网水压的恒定,水泵电机的转速要跟随用水量的变化而变化,这就要用变频
14、器为水泵电机供电。这也有两种配置方案,一是为每台水泵电机配一台变频器,这当然方便,电机与变频器间不须切换,但购变频器的费用较高。所以本系统采用另一种方案是三台电机配一台变频器,变频器与电机间可以切换,供水运行时,一台水泵变频运行。其余水泵工频运行,以满足不同用水量的需求。 图1.4 PLC控制的恒压供水泵站第2章 恒压供水系统的硬件设计2.1变频器的设计 变频调速技术(vaiahle vaiahle firequency technology)是一项综合现代电气技术和计算机控制的先进技术,广泛应用于水泵节能和恒压供水领域。变频调速的基本原理是根据交流电动机工作原理中的转速关系,即均匀改变电动机
15、定子绕组的电源频率,就可以平滑地改变电动机的同步转速。电动机转速变慢,轴功率就相应减少,电动机输入功率也随之减少。这就是水泵变频调速的节能作用。水泵消耗功率与转速的三次方成正比,即P=Kn3。其中P为水泵消耗功率;n为水泵运行时的转速;K为比例系数。变频调速和智能控制技术,可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。用阀门控制水泵流量时,部分有功功率被损耗浪费掉了,且随着阀门不断关小,这个损耗还要增加。如果采用降低电机转速的方式进行控制,就避免了消耗在阀门的有功功率。这样,在转运同样流量的情况下,仅需要输入较低的功率,获得节能效果。实践证明,使用变频设备可使水泵运行平均转速比工
16、频转速降低20%,从而大大降低能耗。 交流变频器是微计算机及现代电力电子技术高度发展的结果。微计算机是变频器的核心,电力电子器件构成了变频器的主电路。大家都知道,从发电厂送出的交流电的频率是恒定不变的,在我国是每秒50Hz。而交流电动机的同步转速 (2.1)式中-同步转速,r/min; -定子频率,Hz; -电机的磁极对数。而异步电动机转速 (2.2)式中-异步电机转差率,一般小于3%。均与送入电机的电流频率/成正比例或接近于正比例。因而,改变频率可以方便地改变电机的运行速度,也就是说变频对于交流电机的调运来说是十分合适的。根据设计要求,选用通用变频器。其带有PID功能。通过变频器面板设定一个
17、给定频率作为压力给定值,变频器根据压力给定和实测压力,调节输出频率,改变水泵转速,控制管网压力保持在给定压力值上;U、V、W输出端并联三个接触器分别接M1、M2、M3泵电机,变频器可分别驱动三台泵,另外这三台泵电机还通过另外三个接触器并联到工频电源上,这6个接触器线包连接到PLC的四个输出点上,由PLC控制其工频、变频切换工作。通过变频器面板设定一个给定频率作为压力给定值,变频器根据压力给定和实测压力,调节输出频率,改变水泵转速。变频器有2个作用,一是作为电机的软起动装置,限制电动机的启动电流;二是改变异步电动机的转速,实现恒压供水。2.2 PID控制器的设计2.2.1 PID控制器的选择PI
18、D控制方式是现代工业控制中应用的最广泛的反馈控制力式之一。它的原理通过控制对象的传感器等检测控制量(反馈量),将其与目标值(温度、流量、压力等设定值)进行比较。若有偏差,则通过此功能的控制动作使偏差为零。也就是使反馈量与目标值相一致的一种通用控制方式。它比较适用于流量控制、压力控制、温度控制等过程量的控制。在恒压供水中常见的PID控制器的控制形式主要有两种:(1)硬件型,即通用PID控制器,在使用时只需要进行线路的连接和P,I,D 参数及目标值的设定。(2)软件型,使用离散形式的PID控制算法在可编程序控制器上做 PID控制器。在该系统中我们用硬件型设计这样可以减少编程。2.2.2 PID控制
19、算法及特点PID控制器是根据目标值(设定值)r(t)与反馈值(测量值)c(t)构成的控制偏差: e(t)=r(t)-c(t) 。将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对受控对象进行控制。其控制规律为: (2.3) 或 (2.4)式中: 调节器的比例系数 : 调节器的积分时间 : 调节器的微分时间: 调节器的偏差信号: 比例带,它是惯用增益的倒数u: 输出 图2.1 PID控制原理图简单来说 ,PID控制器各校正环节的作用是这样的:(1)比例环节: 即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用以减小误差。(2)积分环节 :主要用于消
20、除静差,提高系统的无差度,积分作用的强弱取决于积分时间常数Ti, Ti越大,积分作用越弱,反之则越强。(3)微分环节 :能反应偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。PID调节器的传递函数是: (2.5)当上述控制算法公式只包含第一项时,称为比例(P)作用,只包含第二项时,称为积分(I)作用;但只包含第三项的单纯微分(D)作用是不采用的,因为它不能起到使被控变量接近设定值的效果,只包含第一、二项的是PI作用;只包含第一、三项的是PD作用;同时包含这三项的是PID作用。仅用P动作控制,不能完全消除偏差
21、。为了消除残留偏差,一般采用增加I动作的PI控制。用PI控制时,能消除由改变目标值和经常的外来扰动等引起的偏差。但是,I动作过强时,对快速变化偏差响应迟缓。对有积分元件的负载系统可以单独使用P动作控制。对于PID控制,发生偏差时,很快产生比单独D动作还要大的操作量,以此来抑制偏差的增加。偏差小时,P动作的作用减小。控制对象含有积分元件的负载场合,仅P动作控制,有时由于此积分元件的作用,系统发生振荡。在该场合,为使P动作的振荡衰减和系统稳定,可用PD控制。换言之,该种控制方式适用于过程本身没有制动作用的负载。利用I动作消除偏差作用和用D动作抑制振荡作用,在结合P动作就构成了PID控制,本系统就是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 基于 PLC 供水系统 设计
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3975838.html