毕业论文基于声音能量的无线传感网络定位算法.doc
《毕业论文基于声音能量的无线传感网络定位算法.doc》由会员分享,可在线阅读,更多相关《毕业论文基于声音能量的无线传感网络定位算法.doc(37页珍藏版)》请在三一办公上搜索。
1、 本科毕业设计说明书(题 目:基于声音能量的无线传感器网络定位算法二 一 三 年 六 月摘 要无线传感器网络在当今社会起着非常重要的作用。而传感器节点的位置对整个应用又起着很大的作用,节点所采集到的信息必须与节点的位置结合才有意义,否则所采集的数据便毫无意义。因此定位是无线传感器网络必备的功能,也是无线传感器网络的核心技术。本文首先对无线传感器网络相关知识作了简单的介绍,包括声音能量的传播规律和无线传感器网络的几种算法,距离相关算法。接着详细介绍了几种距离相关定位算法。设计主要针对三边定位算法和极大似然估计算法展开,在认真了解这两种算法后,分析其定位过程、定位方法、及定位误差。最后利用matl
2、ab仿真软件对接收到的声音能量和定位算法进行仿真验证,并将两种算法的定位误差进行比较,从而得出,基于声音能量的无线传感器网络定位算法的两种算法中极大似然估计算法更好一点的结论。关键词:无线传感器网络;三边定位算法;极大似然估计算法;matlabAbstractWireless sensor network plays a very important role in todays society. And the position of the sensor nodes in the entire application plays a big role, node to collect in
3、formation and the position of the node must be combined with meaningful, otherwise the data is meaningless. So the orientation is essential for wireless sensor network function, the core technology and wireless sensor network.Firstly, wireless sensor network related knowledge are introduced, several
4、 algorithms including the sound energy propagation and wireless sensor network, distance correlation algorithm.Then introduces the range-based localization algorithm. The design for the three main edge location algorithm and the maximum likelihood estimation algorithm, in the understanding of these
5、two algorithms, analysis of its positioning, positioning method, and the positioning error.Finally, the simulation of the sound energy received and positioning algorithm using MATLAB simulation software, and the positioning error of two algorithms are compared, thus obtained, is more better conclusi
6、on MLE two algorithms for wireless sensor network localization algorithm based on acoustic energy.Keywords: wireless sensor network; three edge location algorithm; maximum likelihood estimation; MATLAB目录第一章 绪论11.1 课题研究的背景和意义11.2 无线传感器网络国内外研究现状11.3 基于声音能量的无线传感器网络目标定位简介21.4 定位算法评价指标31.5 本章小结4第二章 声音能量的
7、传播规律及适用算法的分析52.1 声音的基本概念及其传播规律52.2 声音能量衰减模型及算法的提出52.3 基于声音能量衰减模型提出WSN定位技术62.3.1 常用测距方法62.3.2 常用的定位计算方法72.4 定位算法设计的注意问题72.5 算法的流程图及设计思路82.5.1 算法的流程图82.5.2 设计思路82.6 本章小结9第三章 无线传感网络目标定位算法103.1 论文定位算法介绍103.2 三边测量法103.3 极大似然估计法113.4 比较综合两种定位算法的优劣133.5 本章小结13第四章 基于声音能量的无线传感网络定位算法仿真144.1 实验环境144.2 采集声音能量进行
8、分析144.3 背景噪音均值为0,标准差为1环境下两种算法定位图164.4 不同定位算法误差分布仿真174.5 本章小结18结论 19参考文献20谢辞 22附录 23第一章 绪论1.1 课题研究的背景和意义随着无线传感技术的快速发展和日趋成熟,无线通信技术也发展到一定的程度,其发展的技术越来越成熟、快速,方向也越来越多,同时也越来越重要。大量的应用方案开始采用无线技术进行数据采集和通信传输1。无线传感技术、传感网络已经被认定为重要的研究内容之一。值得庆幸的是,WSN技术在中国找到了发展机会。政府引导、研究人员推动和企业的积极参与大大加快了WSN技术的市场化进程,中国必将在WSN技术和市场推进中
9、发挥重要作用2。无线传感网络是一种开创了新应用领域的新兴概念和技术。无线传感器网络节点的稳定运行是整个网络可靠性的重要保障。低功耗无线传感模块研究具有极其重要的学习和研究价值,其功能的实现具有极其重要的理论和现实意义。首先,现有的众多研究中,将性能和低功耗相结合的较少,有的只考虑低功耗而性能不高,有的性能高但是功耗太大3。其次,增加无线传感模块的应用。无线传感模块应用已非常广泛,除去组成无线传感网络的应用外,无线传感技术还广泛的应用于环境监测,如车间温湿度、短距无线通信等。克服了这些困难,无线传感器网络将会发挥巨大的功能。1.2 无线传感器网络国内外研究现状无线传感器网络在许多国家的军事和民用
10、的各个领域都具有十分广阔的应用前景,它的出现引起了许多国家越来越大的兴趣以及挑战。许多国家都非常重视无线传感器网络的基础理论和应用研究4。从国外的研究现状来看,美国是最早开始研究无线传感器网络技术的国家,美国国防部和军方近年来投入了巨资,在一些著名的高校、研究机构和企业公司,开展一系列满足军方作战须取得无线传感器网络技术和应用研究的活动,研究的重点主要集中在各种军用侦察和监视技术与系统,如“智能微尘”(SmartDust)、“无线综合网络传感器”(WINS)、“传感器信息技术”(SensorIT)、“沙地直线系统”(A Line in the Sand)等。WSN网络是面向应用的,贴近客观世界
11、的网络系统,其产生和发展一直都与应用相联系。多年来经过不同领域研究人员的演绎,WSN技术在军事领域、安全监控、环保监测、建筑领域、工业监控、智能交通、自由空间探索、智能家居等领域的应用得到了充分的肯定和一定的应用5。在中国:中科院的微系统所主导的团队积极开展基于WSN的边境防御系统的研发和试点,已取得了阶段性的成果。现在,无线传感器网络在人们的生活应用中已经起了积极地作用。比如:(1)在环境监控和精细农业方面,WSN系统应用最为广泛,英特尔公司建立了世界上第一个无线葡萄园,这是一个典型的精准农业、智能耕种的例子;中国杭州齐格科技有限公司与浙江农科院合作研发了远程管理决策服务平台,该平台利用了无
12、线传感器技术实现对农田温室大棚温湿度、露点、光照等环境信息的监测;(2)在民用安全监控方面,英国的一家博物馆利用无线传感器网络设计了一个报警系统,他们将节点放在珍贵文物或艺术品的底部或背面,通过侦测灯光亮度的改变和振动的情况,来判断展览品的是否安全;中科院在故宫博物院实施的文物安全监控系统也是WSN技术在民用安防领域中的突出应用;2004年,哈工大在深圳地王大厦实施部署了监测环境噪声和震动加速度响应测试的WSN网络系统;(3)在医疗监控方面,英特尔公司目前正在研制家庭护理的无线传感器网络定位系统,作为美国“应对老龄化社会技术”的一项重要内容;在对特殊医院(精神类或残障类)中病人的位置监控方面,
13、WSN也有巨大的应用潜力;(4)在工业监控方面,中国西安成峰公司与陕西天和集团合作开发了矿井环境监测系统和矿工井下区段定位系统,这样使得无人监控安全既准确又能减少事故的发生;(5)在智能交通方面,美国交通部提出了“国家智能交通系统项目规划”,预计到2025年全面投入使用,该系统综合运用大量传感器网络,配合GPS系统等,实现对交通车辆的优化调度,并为个体交通推荐最佳的行车路线服务,目前在美国的一些城市已经建有这样的智能交通信息系统6。总的来说,无线传感器网络以其独特的优势已经在世界各地逐步地显现出来,鉴于当前的使用和研究情况,相信无线传感器网络技术在未来的几十年内将会被应用于更广阔的领域。1.3
14、 基于声音能量的无线传感器网络目标定位简介目标定位技术是利用无线传感器网络节点分布式协作进行工作的一个重要应用,它利用网络内多个传感器节点检测的目标信息进而估算出某一时刻该定位目标的具体位置7。本文主要讨论声音能量的目标定位方法,基于声音能量的目标定位相对于其他目标定位来说特点有:(1)不因视线和能见度而影响定位:声音定位系统可以在晚上、阴雨天、雾霾天和下雪天工作,具有全天候工作的优点;(2)易隐蔽,有较强的保密性:声音定位系统不受电磁波的干扰,也不易被无线电测量;(3)普遍存在于常见的目标和常见的监测目标中:许多目标的出现都伴有不同的频率、幅值的声音,声音目标定位在实际应用中更具普遍性;(4
15、)用以目标定位的声音能量传感器成本低,能耗小:常见的声音传感器有驻极体麦克风、硅麦克风等,其价格相对于其他传感器要低,功耗也较少;(5)声音能量易检测、易分辨:可以通过不同频率、幅值及具体坏境因素分析目标位置8。在诸多基于声音能量的定位算法中,本文在大的方面选择了声音能量在接收信号时强度强弱的定位。而在基于接收信号声音能量强度的定位算法中,又选择了基于测距的定位算法进行研究。根据声音传播的规律,寻找一个适合声音能量传播的合理模型,此模型反映了节点检测的声音能量强度与其目标节点之间距离的关系,根据此模型可以通过多个节点的检测值估算出定位目标的位置,这种算法对节点的数量和分布密度要求相对来说较低,
16、更适合于实际应用,所以本论文研究的是基于声音能量强度中基于测距的无线传感器网络目标定位问题。1.4 定位算法评价指标1.定位误差与定位的精度:定位误差指经算法定位未知节点的坐标与实际坐标之间的误差。误差值越大,定位精度越小,定位也越不准确;2.网络规模:一种定位技术在给定的一段时间内或一定数量的基础设施时,能够定位目标的多少;3.节点密度:指单位面积上的节点数。节点密度影响整个网络的开销、网络的连通性,从而影响定位算法的精度。在保证定位精度的基础上,尽量降低信标节点密度以减少网络成本;4.容错性和自适应性:无线传感器系统或者定位算法需具有较高的容错性和自适应性,能够通过自身调整或者重构来纠正错
17、误、适应环境、减少各种误差的影响、提高定位精度;5.功耗:定位算法的功耗大小直接影响定位网络系统的寿命长短,定位时产生的功耗开销,节点之间相互通信时产生的功耗开销,以及传感器网络节点存储信息时所产生的功耗开销,功耗越大,定位系统的寿命就越短,所以应该尽量设计耗能低的定位系统;6.代价:节点定位算法的代价主要由时间代价、空间代价、能耗代价和资金代价9。以上指标间相互关联,不仅是设计网络的考虑因素,在后期网络优化,网络更新中也需着重考虑。1.5 本章小结本章主要介绍了无线传感网络的研究现状、发展情况及定位方法的评价指标。第二章 声音能量的传播规律及适用算法的分析2.1 声音的基本概念及其传播规律大
18、部分声音的发出都来源于物体的振动。描述声波的最常见的基本物理量是声压、声功率和声强。(1)声压Pe:它是介质受扰动后产生的逾量压强,单位是帕斯卡(Pa)。(2)声功率W:单位时间内通过垂直于声传播方向面积的声能量称为声功率,单位瓦特(W),它和声压的关系如式W=Pe2S/PoCo其中,Pe为声压,S为垂直于声传播方向的面积,PoCo为空气的特性阻抗率一般取值为400 Ns/m3。(3)声强I:单位面积上的平均声功率称为声强,单位为Wm2,它和声压的关系如式I= Pe2/ PoCo,其中,Pe为声压,PoCo为空气的特性阻抗率。声压的测量比较易于实现,而且通过声压的测量也可以间接求得其他声学参量
19、,所以实际中声音传感器大多都是检测声压值,声音传感器的参数中会提供灵敏度参数,灵敏度是麦克风在单位声压激励下输出的电压值,其单位是mVPa或VPa。灵敏度也经常用分贝表示,灵敏度分贝值与灵敏度值的关系如式:灵敏度分贝值Db=20lg灵敏度值mV/Pa0dB对应的灵敏度值。其中,多数声音传感器的参数中规定0dB对应1VPa。这样根据检测的电压值和传感器的灵敏度就可以得出检测的声压值,从而可以求得其他声学参量10。2.2 声音能量衰减模型及算法的提出声音能量衰减模型是基于声音能量强度的目标定位算法的基本研究目标,目标计算模型决定了定位的准确程度。我们知道,声音信号的能量与它传播距离的平方成反比,目
20、标定位算法就是利用声音的传播的这个特点来计算目标的位置11。将节点监测到的电压值转化为声音能量值,代入模型估算出声源的位置,从而实现目标定位估计。具体化这一模型:假设在某一时刻t声源目标进入了由n个声音传感器节点组成的无线传感器网络,理论上认为目标源均匀地向四周发射声音信号能量,这样,第i个传感器节点在时刻t检测到的声音信号能量可以表示为式:Yi(t)=si(t)+i(t),i=1,2,3 (2-1)si(t):t时刻目标值因能量传播到节点i衰减后的能量值 i(t):t时刻节点i的背景噪音能量值,一般认为气均值为0,方差为2Yi(t):t时刻节点i实际测得的能量值在具体的测量过程中,忽略一些数
21、据的影响,就可以写出声音能量衰减模型的最终公式,替换si(t),得公式为:Yi(t)=gis(t)/di2(t)+i(t),i=1,2,3 (2-2)其中gi:节点i的噪音影响系数(取1);s(t) :t时刻声源能量(取10000);di(t):节点i与生源目标之间的距离;i(t) :t时刻节点i的背景噪音能量值(均值为0,方差为1)。值得注意的是,以上计算节点接收到的声音能量的算法是在忽略了一定的因素之后得出的,(1)在不同采样节点接收信号时,目标源的声音突变使得接收信号不准确,我们一般认为采样的频率很高,可以忽略这一点;(2)当声源离墙面或山比较近时,这些障碍物都会吸收声音能量导致节点采集
22、信息有误差,当节点离目标生源非常近的时候就不能把它当做一个点来看待。然而,传感器有多点协作的的特点,同时,传感器接收到信号的时间一般比声源变化得快,所以,为了使目标定位算法简洁而又不影响大的计算面,还是可以适当的忽略这些细小的干扰;(3)在具体的节点接受能量计算过程中,本文尽量会在不影响定位结果的情况下精简计算量,降低计算复杂度12。2.3 基于声音能量衰减模型提出WSN定位技术上式中通过将每个声音传感器节点检测到的电压值转化为声音能量值,通过声音信号的能量与它传播距离的平方成反比这一结论可以就此算出各节点的位置,利用适当算法进而可以求出目标节点位置,以下就是对算法具体分析研究。2.3.1 常
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业论文 基于 声音 能量 无线 传感 网络 定位 算法

链接地址:https://www.31ppt.com/p-3973685.html