模糊控制在液位控制中的仿真应用设计.doc
《模糊控制在液位控制中的仿真应用设计.doc》由会员分享,可在线阅读,更多相关《模糊控制在液位控制中的仿真应用设计.doc(50页珍藏版)》请在三一办公上搜索。
1、吉林化工学院毕业设计模糊控制在液位控制中的仿真应用设计Simulation Design Based on Fuzzy Controller in Liquid Level Control学生学号: 09510441 学生姓名: 霍可栋 专业班级: 自动0904 指导教师: 吕春兰 职 称: 副教授 起止日期: 2013.03.042013.06.23 吉 林 化 工 学 院Jilin Institute of Chemical Technology摘 要本次设计主要论述了应用模糊控制理论控制水箱液位,详尽的介绍模糊控制理论的相关知识,提出水箱液位模糊控制的方案,建立基于水箱水位的数学模型并用
2、MATLAB进行仿真设计。首先根据双容水箱的系统结构,通过计算得到数学模型的传递函数;然后利用Matlab工具箱设计模糊控制器,具体包括以下三步:(1)确定模糊控制器的结构;(2)输入输出的模糊化;(3)模糊推理决策算法设计;最后分别用常规PID控制与模糊控制对双容水箱系统仿真。通过常规PID控制与模糊控制仿真结果的对比,我们能看出模糊控制较传统的PID控制来讲具有响应速度快、适应性较强,即鲁棒性好、超调量小稳定时间较长等优点,显示出很强的抗干扰性能。关键词:水位控制;模糊控制器;模糊规则; FISAbstractThis paper is primarily on the applied f
3、uzzy control theory control level in the reservoir system, first introduced in detail the fuzzy control theory of knowledge, and Then put forward to realize the control of the water level in the water tank scheme using fuzzy theory,finally simulation design of mathematical model of fuzzy controller
4、with MATLAB based on the water tank water level .Firstly, according to the system structure of double tank, transfer function is obtained through the calculation of mathematical model. Then use the Matlab toolbox to design the fuzzy controller, including the following three steps: (1)Determine the s
5、tructure of fuzzy controller; (2)Fuzzy input and output; (3)Design of fuzzy reasoning and decision algorithms. Finally, by using the MATLAB fuzzy logic toolbox and SIMULINK combination function,Compare the simulation result of conventional PID control and fuzzy control for dual-tank system. By contr
6、ast to conventional PID control and fuzzy control simulation results, we can see the fuzzy control over the conventional PID control with fast response, strong adaptability, robustness, and overshoot advantages of a small stable for a long time, showing the expected good steady performance.Key Words
7、:Level control; Fuzzy controller; Fuzzy rules; FIS目 录摘 要IAbstractII第一章 绪论11.1 模糊控制水箱水位系统概述11.2 模糊控制理论简介11.2.1 模糊控制理论的产生、发展及现状11.2.2 模糊控制理论运用于水箱水位系统控制的意义21.3 仿真建模工具软件MATLABSIMULINK简介21.4 本文的主要任务及内容安排4第二章 模糊理论及模糊控制基础62.1模糊理论基础62.1.1 从经典集合到模糊集合的转变62.1.2 模糊集合的基本概念82.1.3 模糊集合的基本运算112.2 模糊控制的基础知识132.2.1 模
8、糊控制的一般概念142.2.2 模糊控制的回顾和展望152.2.3 模糊控制系统的结构152.3 本章小结20第三章 水箱水位模糊控制器的建立223.1 双容水箱的动态分析与建模223.2 Matlab下模糊控制器的设计243.2.1 确定模糊控制器的结构243.2.2 输入输出的模糊化253.2.3 模糊推理决策算法设计263.3 本章小结29第四章 利用MATLAB对水箱水位系统进行仿真建模304.1 水箱水位模糊推理系统(FIS)的建立304.2 模糊规则的建立324.3 对SIMULINK模型控制系统的构建354.4 Matlab对水箱液位的仿真设计364.4.1 常规PID对液位模型
9、的仿真364.4.2 模糊控制对液位模型的仿真374.4.3 混合式模糊控制对液位的仿真384.4.4 干扰后常规PID与模糊控制仿真对比394.5 本章小结40结 论42参考文献43致 谢44第一章 绪论1.1 模糊控制水箱水位系统概述在能源、化工等多个领域中普遍存在着各类液位控制系统,各种控制方式在液位控制系统中也层出不穷,如较常用的浮子式、磁电式和接近开关式。而随着我国工业自动化程度的提高,规模的扩大,在工程中液位控制的计算机控制得到越来越多的应用。液位控制系统的检测及计算机控制已成为工业生产自动化的一个重要方面1。经典控制理论和现代控制理论的控制效果很大一部分取决于描述被控过程精确模型
10、的好坏,这使得基于精确数学模型的常规控制器难以取得理想的控制效果。但是一些熟练的操作工人、领域专家却可以得心应手的进行手工控制。因此基于知识规则的模糊控控制理论在其应用中就有了理论和现实意义2。1.2 模糊控制理论简介1.2.1 模糊控制理论的产生、发展及现状 美国加利福尼亚大学教授扎德(L.A. Zadeh)在 1965 年撰写的论文Fuzzy Set开创了模糊逻辑的历史,从此,模糊数学这门学科渐渐发展起来。1966 年,P. N. Marinos发表了模糊逻辑的研究报告,这标志着模糊逻辑真正地诞生。后来,扎德又提出模糊语言变量这个重要的模糊逻辑概念。1974 年,扎德又进行模糊逻辑推理的研
11、究。自 1974年英国的 E. H. Mamdani 教授成功地将模糊逻辑应用于锅炉和蒸汽机控制以来,模糊控制已逐渐得到了广泛的发展并在现实中得到成功的应用。从此,模糊逻辑成为专家学者、控制工程师们研究的一个热门课题。特别是在日本,模糊理论的应用得到空前发展,最引人注目的是1987年7月仙台市采用模糊逻辑进行控制的地下铁路运输系统成功地投入运行。目前,模糊理论及其应用愈来愈受到人们的欢迎,在学术界也受到不同专业研究工作者的重视,在化工、机械、冶金、工业炉窑、水处理、食品生产等多个领域中发挥着重要的作用。究其原因,主要在于模糊逻辑本身提供了一种基于专家知识(或称为规则)甚至语义描述的不确定性推理
12、方法。控制系统的设计不要求知道被控对象的精确数学模型,只需要提供专家或现场操作人员的经验知识及操作数据,因而对于许多无法建立精确数学模型的复杂系统能获得较好的控制效果,同时又能简化系统硬件电路的设计。 充分显示了其对大规模系统、多目标系统、非线性系统以及具有结构不确定性的系统进行有效控制的能力3。我国模糊控制理论及其应用方面的研究工作是从 1979 年李宝绶,刘志俊等对模糊控制器性能的连续数字仿真研究开始的,大多数是在著名的高等院校和研究所中进行理论研究,如对模糊控制系统的结构、模糊推理算法、模糊语言和模糊文法、自学习或自组织模糊控制器,以及模糊控制稳定性问题等的研究,而其成果主要集中应用于工
13、业炉窑、机床及造纸机等的控制。近年来,模糊控制已渗透到家用电器领域。国内外现在已有模糊电饭煲、模糊洗衣机、模糊微波炉、模糊空调机等在市场上出现4。1.2.2 模糊控制理论运用于水箱水位系统控制的意义采用传统的控制方法对水箱实施控制时存在以下一些难以克服的困难:() 在一些应用中系统存在严重耦合,如在密封容器中水与气体的耦合。() 由环境温度的不断变化给系统带来的不确定性。() 对于多级复杂的水箱水位控制系统存在时间滞后,包括测量带滞后、过程延迟和传输时滞等。() 在一些工作环境恶劣的条件下,在测量信号中存在大量噪声。() 一些工作环境经常变化和应用广泛的设备的水位控制系统其运行参数的设定值需要
14、经常变化。模糊控制理论以其非线性控制、高稳定性、较好的“鲁棒性”、对过程参数改变不灵敏、参数自调整功能等众多经典PID控制所不具备的特点能很好的克服以上所列的困难。1.3 仿真建模工具软件MATLABSIMULINK简介MATLAB 软件(又称为 MATLAB 语言),是由美国 New Mexico 大学的 CleveMoler 于 1980 年开始开发的,是一个包含数值计算、高级图形与可视化、高级编程语言的集成化科学计算环境。开发该语言的最初目的是为线性代数等课程提供一种方便可行的实验手段,该软件出现以后一直在美国 New Mexico 等大学作为教学辅助软件使用,同时作为面向公众的免费软件
15、广为流传。1984 年由 CleveMoler 等人创立的 Mathworks 公司推出了 MATLAB 的第一个商业版本。由于该软件的使用极其容易,且提供了丰富的矩阵处理功能,所以很快就吸引了控制领域研究人员的注意力,并在它的基础上开发了专门的控制理论 CAD 应用程序集(又称为工具箱),使之很快地在国际控制界流行起来,目前它已经成为国际控制界最流行的语言。除了流行于控制界,MATLAB 还在图象信号处理、生物医学工程、通讯工程等领域有广泛的应用。MATLAB 当前的功能包括可靠的数值运算(不局限于矩阵运算)、图形绘制、数据处理、图象处理、方便的 GUI(GraphicUser Interf
16、ace,图形用户界面)编程,同时有大量配套的工具箱,如控制界最流行的 控 制 系 统 工 具 箱 (Control systems toolbox) , 系 统 辨 识 工 具 箱 (Systemidentification toolbox),鲁棒控制工具箱(Robust control toolbox),多变量频域设计工具箱(multivariable frequency design toolbox),分析与校正(-analysis andsynthesis toolbox),神经网络工具箱(neural network toolbox),最优化工具箱(optimization toolb
17、ox),信号处理工具箱(signal processing toolbox)以及集成仿真环境 SIMULINK。参与编写这些工具箱的设计者很多是国际控制界的名流,包括Alan Laub,MichaelSofanov,Leonard Ljung,Jan Maciejowski 等这些在相应领域的著名专家,所有这些当然的提高了 MATLAB 的声誉与可信度,使得 MATLAB风靡国际控制界,成为最重要的 CACSD 工具。Simulink 是一个基于 MATLAB 平台用来对动态系统进行建模、仿真和分析的面向结构图方式的仿真环境,是 MathWorks 公司在 1990 年为 MATLAB3.5
18、版本推出的新的图形输入与仿真工具,起初定名为 SIMULAB,但因其与著名的SIMULA 软件名类似,故在 1992 年正式更名为 Simulink,它是动态系统仿真领域中最为著名的集成仿真环境之一。在那以前控制界很多学者使用 ACSL(高级连续仿真语言)作为系统仿真的语言,而方便、图形化的 Simulink 一出现,就迅速地取代了 ACSL 语言,成为研究者首选的仿真工具。Simulink 环境包含功能齐全的子模型库:Source(信号源库)、Sinks(输出方式库)、Discrete(离散模型库)、Linear(线性环节库)、Nonlinear(非线性环节库)、Connection(连接及
19、接口库)、Blocksets and toolboxs(模块建立和工具箱库)以及 Demos(实例库)。它们能够帮助用户迅速建立自己的动态系统模型,并在此基础上进行仿真分析;通过对仿真结果的分析修正系统设计,从而快速完成系统的设计。Simulink 支持线性和非线性系统,能够在连续时间域、离散时间域或两者的混合时间域里进行建模仿真,它同样支持具有多种采样速率的系统;与传统的仿真软件包用微分方程和差分方程建模相比,Simulink 提供了一种图形化的交互环境,只需用鼠标拖动便可迅速建立系统框图模型,甚至不需要编写一行代码;它和 MATLAB 无缝结合,使其能够直接利用 Matlab 丰富的资源和
20、强大的科学计算功能;另外,Simulink 在系统仿真领域已得到广泛的承认和应用,许多专用的仿真系统都支持Simulink 模型,这非常有利于代码的重用和移植。当前的 MATLAB7.0/Simulink4.0 及其以上的版本提供了更加丰富的专业模块库及强大的高级图形、可视化数据处理能力,图 1-1 和图 1-3 给出了MATLAB7.0 和 Simulink4.0 版本的用户界面。图 1-2 则形象的给出了 Simulink与 MATLAB 之间的层次关系,由图 1-2 可以看出 Simulink 是建立在 MATLAB的基础之上的,它是 MATLAB 环境中的一个模块,Simulink B
21、lockset 提供丰富的模块库,广泛的用于控制、DSP、通讯等领域;Stateflow 是一种利用有限状态机理论建模和仿真事件驱动系统的可视化设计工具,适合于描述复杂的开关控制逻辑、状态转移图以及流程图等;Real-Time Workshop 能够从 Simulink 模型中生成可定制的代码及独立的可执行程序;Stateflow Coder 能够自动生成状态图的代码,并且能够自动地结合到 RTW 生成码中5。 图1-1 MATLAB 6.1开发环境的界面图 1-2 Simulink 与 MATLAB 之间的层次关系图 1-3 Simulink 的图形用户界面1.4 本文的主要任务及内容安排本
22、文以简单的双容水箱水位控制系统为研究对象,来尝试模糊控制理论在自动控制中的应用,模糊控制系统实质上是计算机控制系统,它的硬件部分和一般的计算机控制系统相同,一般由单片机或微机及相关的外围电路、板卡或工控模块等组成,所不同的只是在软件设计上。本文主要是探讨模糊控制理论的一种典型应用,利用了当前流行的仿真软件MATLAB/SIMULINK,进行仿真建模生成软件模型进行仿真调试,以期达到掌握参数,控制精度,动态特性等指标的比较结果的目的。根据这些任务,本文主要进行了以下几个方面的工作:() 对模糊理论相关知识进行理论学习。() 结合双容水箱水位系统进行模糊控制器的设计。() 利用MATLAB/SIM
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模糊 控制 中的 仿真 应用 设计

链接地址:https://www.31ppt.com/p-3972082.html