模块化安全铁路信号计算机联锁系统毕业论文外文翻译.doc
《模块化安全铁路信号计算机联锁系统毕业论文外文翻译.doc》由会员分享,可在线阅读,更多相关《模块化安全铁路信号计算机联锁系统毕业论文外文翻译.doc(14页珍藏版)》请在三一办公上搜索。
1、 外文文献翻译 基于单片机的智能DMM设计 院 、 部: 电气与信息工程学院 学生姓名: 指导教师: 职称 讲师 专 业: 自动化 班 级: 09级01班 完成时间: 2013.06.06 Component-based Safety Computer of Railway Signal Interlocking System1 IntroductionSignal Interlocking System is the critical equipment which can guarantee traffic safety and enhance operational efficiency
2、 in railway transportation. For a long time, the core control computer adopts in interlocking system is the special customized high-grade safety computer, for example, the SIMIS of Siemens, the EI32 of Nippon Signal, and so on. Along with the rapid development of electronic technology, the customize
3、d safety computer is facing severe challenges, for instance, the high development costs, poor usability, weak expansibility and slow technology update. To overcome the flaws of the high-grade special customized computer, the U.S. Department of Defense has put forward the concept:we should adopt comm
4、ercial standards to replace military norms and standards for meeting consumers demand 1. In the meantime, there are several explorations and practices about adopting open system architecture in avionics. The United Stated and Europe have do much research about utilizing cost-effective fault-tolerant
5、 computer to replace the dedicated computer in aerospace and other safety-critical fields. In recent years, it is gradually becoming a new trend that the utilization of standardized components in aerospace, industry, transportation and other safety-critical fields.2 Railways signal interlocking syst
6、em2.1 Functions of signal interlocking systemThe basic function of signal interlocking system is to protect train safety by controlling signal equipments, such as switch points, signals and track units in a station, and it handles routes via a certain interlocking regulation.Since the birth of the r
7、ailway transportation, signal interlocking system has gone through manual signal, mechanical signal, relay-based interlocking, and the modern computer-based Interlocking System.2.2 Architecture of signal interlocking system Generally, the Interlocking System has a hierarchical structure. According t
8、o the function of equipments, the system can be divided to the function of equipments; the system can be divided into three layers as shown in figure1.Figure 1 Architecture of Signal Interlocking System3 Component-based safety computer design3.1 Design strategyThe design concept of component-based s
9、afety critical computer is different from that of special customized computer. Our design strategy of SIC is on a base of fault-tolerance and system integration. We separate the SIC into three layers, the standardized component unit layer, safety software layer and the system layer. Different safety
10、 functions are allocated for each layer, and the final integration of the three layers ensures the predefined safety integrity level of the whole SIC. The three layers can be described as follows:(1) Component unit layer includes four independent standardized CPU modules. A hardware “SAFETY AND” log
11、ic is implemented in this year.(2) Safety software layer mainly utilizes fail-safe strategy and fault-tolerant management. The interlocking safety computing of the whole system adopts two outputs from different CPU, it can mostly ensure the diversity of software to hold with design errors of signal
12、version and remove hidden risks.(3) System layer aims to improve reliability, availability and maintainability by means of redundancy.3.2Design of hardware fault-tolerant structureAs shown in figure 2, the SIC of four independent component units (C11, C12, C21, C22). The fault-tolerant architecture
13、adopts dual 2 vote 2 (2v22) structure, and a kind of high-performance standardized module has been selected as computing unit which adopts Intel X Scale kernel, 533 MHZ. The operation of SIC is based on a dual two-layer data buses. The high bus adopts the standard Ethernet and TCP/IP communication p
14、rotocol, and the low bus is Controller Area Network (CAN). C11、C12 and C21、C22 respectively make up of two safety computing components IC1 and IC2, which are of 2v2 structure. And each component has an external dynamic circuit watchdog that is set for computing supervision and switching. Figure 2 Ha
15、rdware structure of SIC3.3Standardized component unitAfter component module is made certain, according to the safety-critical requirements of railway signal interlocking system, we have to do a secondary development on the module. The design includes power supply, interfaces and other embedded circu
16、its.The fault-tolerant processing, synchronized computing, and fault diagnosis of SIC mostly depend on the safety software. Here the safety software design method is differing from that of the special computer too. For dedicated computer, the software is often specially designed based on the bare ha
17、rdware. As restricted by computing ability and application object, a special scheduling program is commonly designed as safety software for the computer, and not a universal operating system. The fault-tolerant processing and fault diagnosis of the dedicated computer are tightly hardware-coupled. Ho
18、wever, the safety software for SIC is exoteric and loosely hardware-coupled, and it is based on a standard Linux OS. The safety software is vital element of secondary development. It includes Linux OS adjustment, fail-safe process, fault-tolerance management, and safety interlocking logic. The hiera
19、rchy relations between them are shown in Figure 4. Figure 4 Safety software hierarchy of SIC3.4Fault-tolerant model and safety computation3.4.1 Fault-tolerant modelThe Fault-tolerant computation of SIC is of a multilevel model:SIC=F1002D(F2002(Sc11,Sc12),F2002(Sc21,Sc22)Firstly, basic computing unit
20、 Ci1 adopts one algorithm to complete the SCi1, and Ci2 finishes the SCi2 via a different algorithm, secondly 2 out of 2 (2oo2) safety computing component of SIC executes 2oo2 calculation and gets FSICi from the calculation results of SCi1 SCi2, and thirdly, according the states of watchdog and swit
21、ch unit block, the result of SIC is gotten via a 1 out of 2 with diagnostics (1oo2D) calculation, which is based on FSIC1 and FSIC2.The flow of calculations is as follows:(1) Sci1=F ci1 (Dnet1,Dnet2,Ddi,Dfss)(2) Sci2=F ci2 (Dnet1,Dnet2,Ddi,Dfss)(3) FSICi=F2oo2 (Sci1, Sci2 ),(i=1,2)(4) SIC_OutPut=F1o
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模块化安全铁路信号计算机联锁系统 毕业论文外文翻译 模块化 安全 铁路信号 计算机 联锁 系统 毕业论文 外文 翻译
链接地址:https://www.31ppt.com/p-3972073.html