概率论与数理统计浙大四版第二章4讲课件.ppt
《概率论与数理统计浙大四版第二章4讲课件.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计浙大四版第二章4讲课件.ppt(40页珍藏版)》请在三一办公上搜索。
1、,3.正态分布(normal distribution),正态分布是应用最广泛的一种连续型分布.,正态分布在十九世纪前叶由高斯加以推广,所以通常称为高斯分布.,德莫佛,德莫佛最早发现了二项概率的一个近似公式,这一公式被认为是正态分布的首次露面.,平时,我们很少有人会去关心小球下落位置的规律性,人们可能不相信它是有规律的。一旦试验次数增多并且注意观察的话,你就会发现,最后得出的竟是一条优美的曲线。,高尔顿钉板试验,这条曲线就近似我们将要介绍的正态分布的密度曲线。,正态分布的定义是什么呢?,对于连续型随机变量,一般是给出它的概率密度函数。,一、正态分布的定义,若r.v X的概率密度为,记作,f(x
2、)所确定的曲线叫作正态曲线.,其中 和 都是常数,任意,0,则称X服从参数为 和 的正态分布.,正态分布有些什么性质呢?,由于连续型随机变量唯一地由它的密度函数所描述,我们来看看正态分布的密度函数有什么特点。,二、正态分布 的图形特点,正态分布的密度曲线是一条关于 对称的钟形曲线.,特点是“两头小,中间大,左右对称”.,决定了图形的中心位置,决定了图形中峰的陡峭程度.,正态分布 的图形特点,能不能根据密度函数的表达式,得出正态分布的图形特点呢?,容易看到,f(x)0,即整个概率密度曲线都在x轴的上方;,故f(x)以为对称轴,并在x=处达到最大值:,令x=+c,x=-c(c0),分别代入f(x)
3、,可得,f(+c)=f(-c),且 f(+c)f(),f(-c)f(),这说明曲线 f(x)向左右伸展时,越来越贴近x轴。即f(x)以x轴为渐近线。,当x 时,f(x)0,用求导的方法可以证明,,为f(x)的两个拐点的横坐标。,x=,这是高等数学的内容,如果忘记了,课下再复习一下。,正态概率密度函数的几何特征总结,下面是我们用某大学男大学生的身高的数据画出的频率直方图。,红线是拟合的正态密度曲线,可见,某大学男大学生的身高应服从正态分布。,人的身高高低不等,但中等身材的占大多数,特高和特矮的只是少数,而且较高和较矮的人数大致相近,这从一个方面反映了服从正态分布的随机变量的特点。,请同学们想一想
4、,实际生活中具有这种特点的随机变量还有那些呢?,除了我们在前面的身高外,在正常条件下各种产品的质量指标,如零件的尺寸;纤维的强度和张力;农作物的产量,小麦的穗长、株高;测量误差,射击目标的水平或垂直偏差;信号噪声等等,都服从或近似服从正态分布.,服从正态分布 的随机变量X的概率密度是,X的分布函数P(Xx)是怎样的呢?,正态分布由它的两个参数和唯一确定,当和不同时,是不同的正态分布。,标准正态分布standard normal distribution,下面我们介绍一种最重要的正态分布,三、标准正态分布,的正态分布称为标准正态分布.,其密度函数和分布函数常用 和 表示:,它的依据是下面的定理:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 浙大 第二 讲课
链接地址:https://www.31ppt.com/p-3963722.html