核截面不确定性引起反应堆积分参数误差举例-国家核电学习系统课件.ppt
《核截面不确定性引起反应堆积分参数误差举例-国家核电学习系统课件.ppt》由会员分享,可在线阅读,更多相关《核截面不确定性引起反应堆积分参数误差举例-国家核电学习系统课件.ppt(80页珍藏版)》请在三一办公上搜索。
1、核截面引起积分参数keff不确定度的一维分析程序开发,报告人:刚直,2014年11月,1,(1)选题背景及意义;,(2)国内外研究现状;,(3)基本原理和方法;,(4)程序开发;,(5)程序验证及初步应用;,(6)结论;,(7)总结和展望;,报告内容:,2,一.背景及意义,1.反应堆物理计算过程,(一)引言,3,2.计算过程误差来源,图1-2 堆物理计算误差来源示意图,计算结果=RR,(一)引言,4,1)随着计算机技术的迅猛发展和计算方法的不断完善,目前发展成熟的先进计算程序本身的系统误差对计算结果的影响逐渐减小,而由核数据引入的计算误差对结果的影响越来越不可忽视。,2)国外从20世纪70年代
2、开始进行核截面数据对堆参数计算的不确定度的研究,到目前已发展了各类比较成熟的计算程序,并广泛用于核工程设计计算中。,(二)背景,5,3)在提高反应堆安全和经济性方面有重要作用,如:提高结果可信度:确定积分参数的误差使结果更合 理可信,有助于进行安全分析。设计改进:在工程设计中确立主要参数的误差情 况,根据设计限值对其进行调整和优化。反应堆压力容器延长寿期:通过计算压力容器辐照 剂量等技术参数的不确定度来确定安全裕度,进而预计或延长 其服役期限。核数据调整:根据对基准实验的计算值和实验值比 较,在不确定度范围内对占主导地位的核截面数据进行适当调 整,使利用调整后的截面数据得到的计算结果更接近实验
3、值,完成对核数据的有效调整。,(二)背景,6,4)近年来随着ENDF/B-6.8及JENDL-3.3等最新微观评价数据库相继释放,这些库中包含大多数重要核素核数据的误差信息协方差数据。数据中心已为CEFR制作了包含15个主要核素的6/12群截面协方差矩阵。,(二)背景,7,(一)国外发展状况,二.国内外研究现状,1.发展成熟了利用微扰技术进行核参数对截面的灵敏 度和不确定性分析方法。目前对核装置采用一阶或二阶微扰技术就足够精确了,而在空间上逐步从一维发展到三维以进一步提高计算精度。,2.应用于核工程的许多领域。考虑核截面本身的不确定对核参数计算结果的影响来提高结果的精确度和可靠程度从而达到提高
4、安全性和经济性的目标,国外开展此项工作涉及如裂变堆芯物理参数分析、燃料循环分析、PWR压力容器延寿、聚变层研究、积分实验前后分析、剂量学及医学应用,油井勘探等方面。本论文关注的裂变堆芯物理参数的误差分析方面,包括如临界keff、控制棒价值、安全棒价值、空泡效应、燃耗反应性损失、有效份额以及多普勒效应等参数。,8,(1)确定论方法 1)SWANLAKE程序 该程序是美国橡树岭国家实验室(ORNL)在20世纪七十年代末开发的进行屏蔽灵敏度计算的一维程序。它接受ANISN程序提供的通量和共轭通量以及截面数据,可以计算如剂量率或反应率等屏蔽参量对于截面数据的灵敏度。,(二)国外一些主要计算工具,二.国
5、内外研究现状,9,(1)确定论方法 2)TSUNAMI(SCALE-5)程序 SCALE程序包是美国ORNL开发的为核电站许可申请开展相关计算评估的模块程序系统,可以进行包括临界、屏蔽、源项、燃耗、衰变热和传热等项的计算分析。该程序包目前已发展到SCALE5.0版本。在新版本里加入了灵敏度和不确定度分析程序TSUNAMI(Tools for Sensitivity and Uncertainty Analysis Methodology Implementation)可以进行反应堆装置积分参数Keff对相关截面的灵敏度分析和不确定度分析。,(二)国外一些主要计算工具,二.国内外研究现状,10,
6、(1)确定论方法 3)SUSD3D程序 该程序是由斯洛文尼亚的Jozef Stefan研究院通过欧洲“经济合作与发展组织”(OECD)中的原子能机构(NEA)发布的用于核装置对于截面数据灵敏度和不确定分析的计算程序,从初始的SUSD-1D,SUSD-2D已发展到现在的SUSD-3D版本。该程序采用了一阶微扰理论和计算方法求得灵敏度函数,再利用协方差数据进行探测响应或堆设计参数等积分量对截面数据的不确定度计算。,11,(1)确定论方法 3)SUSD3D程序 新版本中能考虑引起积分参数计算不确定的多种不确定源项,如中子/截面、能量相关的响应函数以及聚变堆中涉及的二次角分布和二次能量分布等不确定项。
7、SUSD3D通过二进制的交互文件格式能接受大多程序计算输出的通量和共轭通量,这些程序包括DOORS程序包中的ANISN、DORT、TORT、ONEDANT、TWODANT、和THREEDANT等。程序基本结构见图2-1。,(二)国外一些主要计算工具,12,图2-1 SUSD3D灵敏度/不确定度分析程序结构示意图,13,(1)确定论方法 4)俄罗斯灵敏度/不确定度分析程序。俄罗斯在反应堆积分参数对截面的灵敏度和不确定分析方面进行了卓有成效的研究工作,独立开发了一批计算程序,形成了自己的计算系统。其中,包括了不确定计算模块CORE、灵敏度计算程序包、协方差数据处理模块和宏观实验评价等,具体计算系统
8、结构见图2-2,主要灵敏度计算程序见表2-1。积分参数Keff对相关截面的灵敏度分析和不确定度分析。,(二)国外一些主要计算工具,14,15,表2-1 俄罗斯灵敏度函数主要计算程序,16,(2)蒙特卡罗方法 M-C方法:利用M-C方法进行灵敏度计算,可灵活处理各种复杂几何结构,因此通常在进行三维灵敏度计算时被采用。但同时为提高计算精度要耗费大量时间,对有些很微小的扰动,其结果可能和计算统计偏差相当而变得没有意义。1)MCNP4C程序 MCNP4C作为著名的粒子输运计算程序,功能非常强大,它采用了微分算子方法将微扰量转换为响应量的径迹估计而实现随机模拟。该程序可通过1阶微扰或2阶微扰进行积分参数
9、对材料成分、密度、几何结构和截面数据的灵敏度分析。2)其他 美国KENO程序俄罗斯开发的MMK-KENO都是可用于截面数据对积分量灵敏度和不确定度计算的三维蒙特卡罗程序。,17,(三)国内发展情况,二.国内外研究现状,在国内有关核截面不确定性引起的积分参数误差的分析只有核数据中心在核截面库协方差矩阵制作和灵敏度计算方面有了一定基础,但把二者相结合用于误差分析还没有开展太多工作。总体说来我们在这方面的研究才刚刚起步,因此有必要尽早投入人力物力开展此项研究工作。,18,(四)核截面不确定性引起反应堆积分参数误差举例,二.国内外研究现状,BN-600目前的UO2堆芯按计划要过渡到MOX堆芯,为了设计
10、验证需要,俄罗斯IPPE和OKBM研究院做了零功率模拟实验和理论计算,利用TRIGEX扩散程序、MMKKENO蒙特卡罗程序和ABBN-93数据库进行了计算分析,其中利用TRIGEX程序和CORE程序联合计算出了由截面数据不确定性引起的主要堆芯核参数误差数据,参见表2-2。,19,表2-2 BN-600混合堆芯主要核参数由截面不确定引起的误差情况,(四)核截面不确定性引起反应堆积分参数误差举例,二.国内外研究现状,20,三.基本原理和方法,图3-1 核装置积分参数不确定度计算流程,(一)基本流程,21,定义:对一个核装置定义一个宏观特 征参数R,它是若干变量如反应截面、裂变谱、权重谱 等的函数,
11、其中一个变量q的单位改变引起R的单位变化量的比值就被定义为特征参数R相应于参数q的灵敏度函数,表示为:其中 为相空间位置矢量和微分体元。,1.灵敏度函数,(二)基本概念,三.基本原理和方法,22,(1)协方差基本概念:随机变量的数学期望:方差为则随机变量 和 之间的协方差为相对协方差可以表示为,(二)基本概念,2.核截面的协方差数据,23,(2)微观点截面协方差矩阵 在微观核截面数据的测量和评价中,各个反应的截面数据也是由更基本的若干直接测量数据根据一定关系导出,这样直接测量数据带有的误差通过函数关系传递给导出量,导致不同点截面之间存在着关联,这种关联就形成了点截面数据的协方差矩阵。举例:由多
12、个测量值扣除一个共同的常数本底属于这种类型这样 的误差将在导出量,间引入关联,由于由定义得到其中,(二)基本概念,2.核截面的协方差数据,24,(2)微观点截面协方差矩阵,利用,的表达式,可构造出 的协方差矩阵 为(由于协方差矩阵为对称阵,只写出下三角部分):,2.核截面的协方差数据,(二)基本概念,25,(3)微观群截面协方差矩阵 从ENDF/B库出发,经过共振重造(RECONR模块)、群平均截面计算(GROUPR模块)后,即把共振参数还原成点截面,再根据具体的能群结构计算出全能区的相应的群平均截面,然后再通过ERROR模块计算出群到群的相对协方差数据。,(二)基本概念,2.核截面的协方差数
13、据,26,考虑函数,其中 为直接测量值,误差为。那么随机变量 是一个导出量,测量值 的误差 要通过函数关系传递给,得到。一般而言,函数关系可能为线性,也可能为非线性;但在推导误差传递公式时总是将 表述成或近似表述成的 线性函数。实验测量值分布为正态分布,根据正态变量的再现性,可知导出量 必然也是一个正态变量,因此在区间 包含真值的概率是0.683。,(二)基本概念,3.误差传递,27,举例:则数学期望为于是导出量的测量误差为根据定义式中 为的 方差,为,之间的协方差。上式就是线性函数的误差传递公式,而推导非线性函数误差传递公式的基本思想是设法将其近似表成线性函数,如用台劳级数展开,再进行线性函
14、数误差传递。,(二)基本概念,3.误差传递,28,(二)基本概念,4.积分量不确定度,基本核数据的测量和评价误差会通过函数关系传递给所要计算的反应堆积分参数,形成积分参数计算不确定度。要计算反应堆积分参数的不确定度,首先要根据基础核数据库给出的误差信息库(核数据协方差数据)通过处理程序计算出不同反应的群截面协方差数据库。然后根据堆的结构及几何布置计算出群截面的灵敏度函数,再根据灵敏度函数与群截面协方差数据计算出反应堆积分参数的误差。,29,设反应堆的某个积分参数为,而与 计算有关的多群截面数据为。可以是堆内某区 某群中子 的某种反应 的平均截面。函数关系为。取一阶扰动则有:,(二)基本概念,4
15、.积分量不确定度,其中,30,由此得到的相对不确定度其中,(二)基本概念,4.积分量不确定度,31,提出问题:通过灵敏度和不确定分析程序可计算得到由截面数据本身的误差带给堆积分参数的不确定度。各类计算表明由核数据不确定引入的误差数值可观,已占积分参数总误差的较大比例。因此,有效降低核数据误差造成的积分参数不确定度是提高反应堆设计精确化的重要内容。,(三)利用积分实验减小不确定度方法,32,解决方法:目前,比较有效的方法是充分利用各类实验装置开展的积分实验,通过Bayes统计方法将核装置上实验数据和反应堆的计算数据进行相关计算处理,利用实验结果的小不确定度来降低计算结果的大不确定度。开展这项工作
16、有两个基本前提:一方面实验装置和反应堆上考察的积分参数对主要核数据有近似的灵敏度系数,即二者有较好的相关性;另一方面装置上积分参数的实验测量不确定度必须小于堆积分参数计算得到的不确定度。具体方法和公式参见论文。,(三)利用积分实验减小不确定度方法,33,1)方法1 确定论方法 方法描述:根据问题的物理性质所建立的数学模型可以用一个或一组确定的数学物理方程来表示,而后对这些方程可以采用数学方法求出其精确或近似的解。堆物理模型求解主要考虑包括能量,位置和方向三个量的数学处理,相应发展了各种近似解法,见表3-1。,(四)数值离散方法,34,球谐近似方法 扩散近似(),表3-1 堆物理数值求解确定论方
17、法,35,2)方法2 微分算子方法(蒙特卡罗方法)该方法称为试验统计或“非确定论方法”,它是基于统计(或概率)理论的数值方法,对所要研究问题构造一随机模拟模型,通过计算机进行抽样试验来求得问题的近似解。蒙特卡罗方法特别适合求解本身带有随机性的物理问题如粒输运等。尤其随着计算机的飞速发展,蒙特卡罗方法已在各领域得到广泛应用。在求解微扰问题上,特别开发了微分算子方法,可以进行材料成分、密度和截面的灵敏度计算。,(四)数值离散方法,36,3)本论文采用方法 SN方法,求解灵敏度函数和不确定度函数 本论文采用Sn方法计算时所需要的通量、共轭通量等参数可由ANISN求解得到,因此论文中进行灵敏度函数和误
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 截面 不确定性 引起 反应堆 积分 参数 误差 举例 国家 核电 学习 系统 课件
链接地址:https://www.31ppt.com/p-3963048.html