2020年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx
《2020年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx》由会员分享,可在线阅读,更多相关《2020年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx(12页珍藏版)》请在三一办公上搜索。
1、2020年宜昌市近五届中考数学几何压轴题(23题)汇编及答案(本大题一般34小问,共11分)上传校勘:柯老师【2015/23】如图四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作O,交边DC于D,G两点,AD分别与EF,GF交于I,H两点。(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,求证:FDFI;设AC2m,BD2n,求O的面积与菱形ABCD的面积之比。【2016/23】在ABC中,AB=6,AC=8,BC=10 . D是ABC内部或BC边上的一个动点(与B,C不重合). 以D为顶点作
2、DEF,使DEFABC(相似比k1),EFBC. (1)求D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH,如图1,连接GH,AD,当GHAD时,请判断四边形AGDH的形状,并证明;当四边形AGDH的面积最大时,过A作APEF于P,且AP=AD ,求k的值. (第23题图1) (第23题图2供参考用) (第23题图3供参考用)图1 图2 【2017/23】23. 正方形的边长为1,点是边上的一个动点(与不重合),以为顶点在所在直线的上方作.(1)当经过点时,请直接填空: (可能,不可能)过点;(图1仅供分析)如图2,在上截取,过点作垂直于直线,垂足为点,册于,求证:四边形为正方形.
3、(2)当不过点时,设交边于,且.在上存在点,过点作垂直于直线,垂足为点,使得,连接,求四边形的最大面积.【2018/23】23. 在矩形中,是边上一点,把沿直线折叠,顶点的对应点是点,过点作,垂足为且在上,交于点.(1)如图1,若点是的中点,求证:;(2) 如图2,求证: ;当,且时,求的值;当时,求的值.图1 图2 图2备用图【2019/23】已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O。(1)填空:点A (填“在”或“不在”)O上;当时,tanAEF的值是 ;(2)如图1,在EFH中,当FE=FH时,求证:AD=AE+DH;(
4、3)如图2,当EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tanAEF的值。参考答案:【2015/23】解:(1)EF是O的直径,FDE=90;(2)四边形FACD是平行四边形理由如下:四边形ABCD是菱形,ABCD,ACBD,AEB=90又FDE=90,AEB=FDE,ACDF,四边形FACD是平行四边形;(3)连接GE,如图四边形ABCD是菱形,点E为AC中点G为线段DC的中点,GEDA,FHI=FGEEF是O的直径,FGE=90,FHI=90DEC=AE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 宜昌市 近五届 中考 数学 几何 压轴 23 汇编 答案
链接地址:https://www.31ppt.com/p-3956841.html