第三章煤气的输送和焦油雾的清除课件.ppt
《第三章煤气的输送和焦油雾的清除课件.ppt》由会员分享,可在线阅读,更多相关《第三章煤气的输送和焦油雾的清除课件.ppt(80页珍藏版)》请在三一办公上搜索。
1、煤气的输送和焦油雾的清除,第三章,煤气的输送和焦油雾的清除,第一节煤气输送系统第二节鼓风机及其操作性能第三节鼓风机的操作管理第四节煤气中焦油雾的清除,第一节 煤气输送系统,煤气由炭化室出来经集气管、吸气管、冷却及煤气净化、化学产品回收设备直到煤气贮罐或送回焦炉或到下游用户,要通过很长的管路及各种设备。为了克服这些设备和管道阻力及保持足够的煤气剩余压力,需设置煤气鼓风机。同时,在确定化产回收工艺流程及选用设备时,除考虑工艺要求外,还应该使整个系统煤气输送阻力尽可能小,以减少鼓风机的动力消耗。一、煤气输送系统及阻力煤气输送系统的阻力,因回收工艺流程及所用设备的不同而有较大差异,同时也因煤气净化程度
2、的不同及是否有堵塞情况而有较大波动。现就大型焦化厂三种流程情况比较介绍如表3-1。,第一节 煤气输送系统,第一节 煤气输送系统,(3)空喷式酸洗塔(4)洗氨塔油洗萘塔煤气最终冷却器:(1)隔板式(2)空喷式洗苯塔:(1)填料式(23台)(2)空喷式(2台)脱硫塔:(1)特拉雷特填料(2)木格填料(3)钢板网填料剩余煤气压力吸气机前的阻力合计吸气机后煤气压力合计,第一节 煤气输送系统,吸入方(机前)为负压,压出方(机后)为正压,鼓风机的机后压力与机前压力差为鼓风机的总压头上述系统为目前国内有些大型焦化厂所采用的较为典型的正压(半负压)生产硫铵的工艺系统,鼓风机所应具有的总压头为19.7125.5
3、0(17.7123.30)kPa。系统是生产硫的回收工艺系统(脱硫工序可设于氨回收工序之前),由于多处采用空喷塔式设备,鼓风机所需总压头仅需13.2420.10kPa,可以显著降低动力费用。系统是全负压水洗氨进行氨分解生产低热值煤气的工艺系统,鼓风机所需总压头为17.5923.87 kPa。,第一节 煤气输送系统,鼓风机一般设置在初冷器后面。这样,鼓风机吸入的煤气体积小,负压下操作的设备和煤气管道少。有的焦化厂将油洗萘塔及电捕焦油器设在鼓风机前,进入鼓风机的煤气中焦油、萘含量少,可减轻鼓风机及以后设备堵塞,有利于化学产品回收和煤气净化。全在负压下回收化学产品的系统,已介绍如前。,第一节 煤气输
4、送系统,二、煤气输送管路 煤气管道管径的选用和管件设置是否合理及操作是否正常,对焦化厂生产具有重要意义。煤气输送管路一般分为出炉煤气管路(炼焦车间吸气管至煤气净化的最后设备)和回炉煤气管路;若焦炉用高炉煤气加热,还有自炼铁厂至炼焦焦炉的高炉煤气管路。这些管路的合理设置与维护都是至关重要的。1.煤气管道的管径选择管道的管径一般根据煤气流量及适宜流速按下列公式确定:,第一节 煤气输送系统,m2 或,m(31)式中:S煤气管道截面积,m2;D煤气管道管径,m;w选用的煤气流速m/s;V实际煤气量,m3/h。,第一节 煤气输送系统,当焦炉的生产能力和配煤质量一定时,炼焦煤气量V干即为一定。对于煤气管道
5、同部位的实际流量V,可按下式计算:,m3/h(32)式中:K把1 m3干煤气换算成在t和101.3kPa下被水汽所饱和的煤气体积系数(见附录1)P煤气的表压(当煤气压力低于大气压力时P取负值),kPa。,第一节 煤气输送系统,由式3-1可知,当选用的煤气流速大时,管道直径可减小,钢材耗量也相应降低,节省基建投资,但这会使管路阻力增大,因而鼓风机的动力消耗也随之增大;当流速小时,情况则相反。所以,所选用的适宜流速应该是折旧费、维修费和操作费构成的总费用最低,对应的流速需多方案计算确定,一般设计中是根据长期积累的丰富经验确定;也可用试差法选择适宜的煤气流速,为了确定适宜的煤气管道管径,可按表3-2
6、所列数据选用适宜流速。使计算的管道直径与煤气流速符合表32的对应数据。,第一节 煤气输送系统,对于吸气主管,允许流速是指除去冷凝液所占截面积后的流速。对于800以上的煤气管道较短的直管可取较高的流速,一般可取为14ms。,第一节 煤气输送系统,.煤气管道应有一定的倾斜度,以保证冷凝液按预定方向自流。吸气主管顺煤气流向倾斜度10,鼓风机前后煤气管道顺煤气流向倾斜度为5,逆煤气流向为7,饱和器后至粗苯工序前煤气管道逆煤气流向倾斜度为715。.管路的热延伸和补偿管路随季节的变化以及管内介质和保温情况的不同,都有温度的变化。当温度升高和降低时,管路必然发生膨胀或收缩变化,变化的数值可由计算得出。,第一
7、节 煤气输送系统,如果管路可以自由的变形,则不会产生热应力。但实际管路是固定地安装在支架和设备上,它的长度不能随温度任意变化,因此会产生热应力(可由计算确定),此热应力作用于管路两端的管托或与管路连接的设备上。在装牢的管路上,如温度变化所引起的热应力大于材料的抗张应力(或抗压应力),则因热应力过大会导致煤气管的焊缝破裂、法兰脱落或管子弯曲变形。因此,在温度变化较大的管路上不得将其装牢,并需采用一种能承受管路热变形的装置,即热膨胀补偿器。在焦炉煤气管道上一般采用填料函式补偿器,在高炉煤气管道上一般采用鼓式补偿器。直径较小的煤气管道可用U管自动补偿,对于小型焦化厂的煤气管道,由于直径较小、转弯较多
8、等特点,则可以充分利用弯管的自动补偿。,第一节 煤气输送系统,4.安装自动放散装置在全部回收设备之后的回炉煤气管道上,设有煤气自动放散装置如图3-1。该装置由带煤气放散管的水封槽和缓冲槽组成,当煤气运行压力略高于放散水封压力(两槽水位差)时,水封槽水位下降,水由连通管流入缓冲槽,煤气自动冲破水封放散;当煤气压力恢复到规定值时,缓冲槽的水靠位差迅速流回水封槽,自动恢复水封功能。水封高度用液面调节器按煤气压力调节到规定液面。煤气放散会污染大气,随着电子技术的发展。带自动点火的焦炉煤气放散装置,将取代水封式煤气放散装置,煤气放散压力根据鼓风机吸力调节的敏感程度确定,以保持焦炉集气管煤气压力的规定值。
9、,5.其他辅助设施,第一节 煤气输送系统,第二节鼓风机及其操作性能,一、离心式鼓风机 1.离心式鼓风机的构造及工作原理离心式鼓风机又称涡轮式或透平式鼓风机,由电动机或汽轮机驱动。其构造如图32所示,离心式鼓风机由导叶轮,外壳和安装在轴上的两个工作叶轮组成。煤气由吸入口进入高速旋转的第一工作叶轮,在离心力的作用下,增加了动能并被甩向叶轮外面的环形空隙,于是在叶轮中心处形成负压,煤气即被不断吸入。由叶轮甩出的煤气速度很高,当进入环形空隙后速度减小,其部分动能变成静压能,并沿导叶轮通道进入第二叶轮,产生与第一叶轮及环隙相同的作用,煤气的静压能再次得到提高,经出口连接管被送入管路中。煤气的压力是在转子
10、的各个叶轮作用下并经过能量转换而得到提高。,第二节鼓风机及其操作性能,图3-2 离心鼓风机示意图,第二节鼓风机及其操作性能,显然,叶轮的转速越高,煤气的密度越大,作用于煤气的离心力即越大,则出口煤气的压力也就越高。大型离心鼓风机转速在5000r/min以上,电动机驱动时,需设增速器以提高转速。离心式鼓风机按进口煤气流量的大小有150、300、750、900和1200m3/min等各种规格,产生的总压头为29.534.3Kpa。,2.鼓风机输气能力及轴功率的计算 焦化厂所需鼓风机的输气能力可根据煤气发生量按下式计算:,第二节鼓风机及其操作性能,m3/h(33)式中 V一鼓风机前煤气的实际体积流量
11、,m3/h;K一每吨干煤的煤气发生量,m3;B一干煤装入量,t/h;T一鼓风机前煤气的热力学温度,K;一大气压力,kPa;一鼓风机前煤气中的水汽分压,kPa;机前鼓风机前吸力,kPa;焦炉装入煤的不均衡系数,取为1.1。,第二节鼓风机及其操作性能,焦化厂鼓风机的输气能力及压头必须能承受焦炉所发生的最大煤气量的负荷,所以在确定鼓风机的输气能力时,应取在最短结焦时间下每吨干煤的最大煤气发生量进行计算,并记入焦炉装煤的不均衡系数。煤气鼓风机轴功率可按绝热压缩过程所耗的功来计算,即,对理想气体可导出所需理论轴功率,积分,可得:,第二节鼓风机及其操作性能,k W(34)式中 P1鼓风机吸入口的绝对压力,
12、k Pa;P2鼓风机出口的绝对压力,k Pa;V1进入鼓风机的煤气实际体积流量,m3/h;K气体的定压热容Cp和定容热容CV的比值,即,对于炼焦煤气K=1.37。式(34)也可写成:k W(35),第二节鼓风机及其操作性能,由于煤气非理想气体需要修正;煤气进出鼓风机、流过鼓风机非理想性(流速大小和方向变化及伴随这些变化生产的涡流等)的产生阻力;鼓风机壁面散热,对煤气温度的影响;鼓风机本身的机械消耗等因素的影响,需对理论轴功率NT进行校正,引入 作为综合效率。显然,除与煤气物性有关外,还与鼓风机的设计、制造、安装水平等多种因素有关,各国不同厂家,时代的 值不同。此处取=0.786,则鼓风机实际轴
13、功率(简称轴功率)为:(36),第二节鼓风机及其操作性能,将式(35)和 值带入式(36)有:k W(37)随着科学技术的发展,中国鼓风机综合技术水平会不断提高,值也会逐步增大。鼓风机所需原动机功率要大于计算所得轴功率,如以蒸汽透平机为原动机时,需增15,如为电动机时,需增2030。由上式可知,鼓风机轴功率主要取决于鼓风机前的煤气实际体积。显然,如初冷器后集合温度高,将使鼓风机功率消耗显著增大。,第二节鼓风机及其操作性能,当煤气初冷器采用串联流程时,由于阻力增大,鼓风机前吸力增大,煤气在鼓风机内的 压缩比(P2/P1)较并联流程增大,因之轴功率也随之增加。但在串联流程中,集合温度降低,进鼓风机
14、的煤气实际体积相应变小,因而串联系统的鼓风机功率消耗比并联流程只增3左右。另外,为了降低鼓风机的功率消耗,吸气管的管径不宜过小和过长,在操作中注意吸气管和初冷器的堵塞。,第二节鼓风机及其操作性能,3.煤气在鼓风机中的温升 在离心式鼓风机内,煤气被压缩所产生的热量,绝大部分被煤气吸收,只有小部分热量散失。因此,煤气在鼓风机内的压缩过程可以近似地视为绝热过程。经压缩后的煤气最终温度,可按下式计算:(38)式中 T1及T2分别为气体压缩前后的热力学温度,K。将炼焦煤气的K值代入上式可得:(39),第二节鼓风机及其操作性能,或煤气经过鼓风机的温升(310)正如鼓风机轴功率N计算中所述,此式是由理想气体
15、绝热压缩导出的。实际操作中机壳散热损失,使t减小的因素;但煤气被风机吸入至排出需要的轴功率比理想过程的轴功率大,多消耗的功转变成了热,则是煤气t升高的因素。在实际生产中,煤气实际温升t实大于或小于t的计算值,要看以上两因素何者是主导因素。一般而言,t=1525是正常的。若t大于35,则说明功率消耗太大了,应认真分析原因,并采取措施解决。,第二节鼓风机及其操作性能,二.离心式鼓风机的性能与调节 焦化厂中鼓风机操作非常重要,既要输送煤气,又要保持炭化室和集气管的压力稳定。在正常生产情况下,集气管压力用压力自动调节机调节,但当调节范围不能满足生产变化的要求时,即须对鼓风机操作进行必要的调整鼓风机在一
16、定转速下的生产能力与总压头之间有一定的关系,可用图3-3所示鼓风机QH特性曲线来表示。,第二节鼓风机及其操作性能,图3-3 转速不变时鼓风机的QH特性曲线,第二节鼓风机及其操作性能,由图3-3可见,曲线有一最高点B,相应于B点压头(最高压头)的输送量称为临界输送量。鼓风机不允许在B点的左侧范围内操作,因在此范围内鼓风机输送量波动,并会发生振动,产生“飞动”现象。只有在B点右侧延伸的特性曲线范围内操作才是稳定的。所以,B点右侧的特性曲线范围是鼓风机的稳定工作区,B点的左侧为鼓风机的不稳定工作区。当鼓风机的运行工况改变时,要用调节的手段使鼓风机处于稳定工作区,维护其稳定运行。常用的调节方法有以下几
17、种:,第二节鼓风机及其操作性能,(1)改变转速。当改变鼓风机转速时,流量与性能曲线相应改变。此法调节范围宽,经济性好,是离心式鼓风机的最佳调节手段。当鼓风机的转速由n变为n1 r/min时,则鼓风机的输气能力Q、总压头H及轴功率N依下列关系式作相应改变。输气能力(311)总压头(312)轴功率(313),第二节鼓风机及其操作性能,在额定转速的50125%范围内,离心鼓风机的QH特性曲线如图3-4。由图可见,随转速的降低,鼓风机的不稳定工作区范围缩小,即使在煤气输送量很小情况下也不易产生“飞动”现象。鼓风机允许的最大转速值称为额定转速,鼓风机的运转速度在一定范围内,会出现工作不均衡,输气量波动,
18、并发生振动等现象,该转速称为临界转速。,第二节鼓风机及其操作性能,图3-4转速变更时鼓风机的QH特性曲线,第二节鼓风机及其操作性能,改变转速适用于汽轮机和变速电动机驱动的鼓风机或安装有液力偶合器的鼓风机。当用蒸汽透平机带动鼓风机时,只要改变进入透平机的蒸汽量,即可改变透平机的转速,亦即改变鼓风机的转速;当用变频电动机作原动机时,通过改变电动机的转速,即可改变鼓风机转速;液力偶合器是以液体为介质来传递功率的传动装置,通过改变液力偶合器工作腔内液体的充满度,使原动机转速不变的条件下,实现鼓风机的无级变速。调速液力偶合器功能:无级调速、过载保护、减缓冲击、隔离振动、空载启动、缓慢加速、高效传动。,第
19、二节鼓风机及其操作性能,(2)进口节流。调节鼓风机吸入口的阀门开度时,鼓风机的特性曲线随之改变。如图3-5所示,当吸入开闭器的开度变小时,鼓风机的不稳定工作范围随之变小,鼓风机的输送能力及总压头也均相应减小。此调节方法简单,适用于固定转速机组的调节,但由于鼓风机前吸力增大,会使压缩比(P2/P1)变大,则鼓风机轴功率消耗及煤气温升增高,故较少采用此法。,第二节鼓风机及其操作性能,图3-5 以吸力管开闭器调节时鼓风机的特性曲线,第二节鼓风机及其操作性能,(3)出口节流。调节鼓风机出口的阀门开度,调节方法简单,但经济性差,适用 于小功率机组的调节。电动鼓风机如果用出入口开闭器进行调节时,应特别注意
20、鼓风机电机电流的变化,一般操作电流不应小于电机额定电流的60%,以防止发生“飞动”现象。(4)交通管调节。当煤气流量减少时,调节交通管的阀门开闭度,使一部分出口煤气返回吸入口,以维持鼓风机的正常运行。交通管调节有“大循环”和“小循环”两种方式。,第二节鼓风机及其操作性能,当鼓风机能力较大,而输送的煤气量较小时,为保证鼓风机工作稳定,可用如图3-6所示的小循环管来调节鼓风机的操作,按调节阀门的开度大小,使由鼓风机压出的煤气部分重新回到吸入管,这种方法称为“小循环”调节。“小循环”调节方法很方便,但显然鼓风机能量有一部分白白浪费在循环煤气上。此外,因为有部分已被加热升温的煤气返回鼓风机并经再次压缩
21、,因而煤气温升会更高。如:某厂用能力为1200m3/min的鼓风机抽送一座焦炉的煤气发生量为28000m3/h时,采用鼓风机“小循环”调节,曾使煤气升温接近90,鼓风机轴瓦温度近70,发生了轴瓦损坏事故。所以,“小循环”调节是很有限的。,第二节鼓风机及其操作性能,第二节鼓风机及其操作性能,当焦炉刚开工投产或因故大幅度延长结焦时间时煤气发生量过少,低于“小循环”调的限度时,则易采用“大循环”调节方法。如图3-7所示,“大循环”调节就是通过“大循环”调节阀门将鼓风机压出的部分煤气经煤气大循环管送到初冷器前的煤气管道中,经过冷却后,再回到鼓风机去。根据实际生产经验获知,当煤气量为鼓风机额定能力的1/
22、41/3时,就需采用煤气“大循环”调节措施。显然“大循环”调节方法可较好地解决煤气温升过高的问题,但同样要增加鼓风机能量的消耗,同时会增加初冷器的负荷及冷却水的用量。如果进入鼓风机的煤气量过小时,经过风机多次循环后,鼓风机后煤气温度仍会发生升温过高,这时应适当调整鼓风机煤气出口开闭器开度,以防轴瓦损坏。,第二节鼓风机及其操作性能,第二节鼓风机及其操作性能,为了扩大离心式鼓风机的稳定工况范围,上述调节方法可联合使用。为保证鼓风机的正常运转,对冷凝液排出管应按时用蒸汽清扫,保证冷凝液及焦油及时排出。三、罗茨式鼓风机1.罗茨鼓风机的构造罗茨鼓风机是利用转子转动时的容积变化来吸入和排出煤气,用电动机驱
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 煤气 输送 焦油 清除 课件

链接地址:https://www.31ppt.com/p-3947167.html