标准闸门的底流毕业设计外文翻译.doc
《标准闸门的底流毕业设计外文翻译.doc》由会员分享,可在线阅读,更多相关《标准闸门的底流毕业设计外文翻译.doc(7页珍藏版)》请在三一办公上搜索。
1、外文原文Experiments in Fluids 27 (1999) 339350 Springer-Verlag 1999Underflow of standard sluice gateA. Roth, W. H. Hager1. IntroductionGates are a hydraulic structure that allows regulation of an upstream water elevation. Among a wide number of gate designs, the so-called standard gate with a vertical g
2、ate structure containing a standard crest positioned in an almost horizontal smooth rectangular channel has particular significance in low head applications. Surface roughness of both the channel and the gate is small and thus insignificant. Standard gates are used both in laboratories and in irriga
3、tion channels, large sewers or in hydraulic structures. Compared to overflow structures, or in particular to the sharp-crested weir, standard gates have received scarce attention. The knowledge is particularly poor regarding the basic hydraulics, whereas studies relating to vibration of these gates
4、are available. The present project describes new findings on standard gate flow, involving: (1) Scale effects; (2) Coefficient of discharge; (3) Surface Ridge; (4) Features of shock waves; (5) Velocity field; (6) Bottom and gate pressure distributions; (7) Corner vortices; and (8) Vortex intensities
5、. A novel device to reduce shock waves in the downstream channel is also proposed.2. Present knowledgeThe present knowledge on gates was recently summarized by Lewin (1995). There is a short chapter on vertical gates containing some information on discharge and contraction coefficients,with a relati
6、vely large scatter of data. This reflects the present state, and gate flow is far from being understood from this point of view, therefore. Historical studies on underflow gates are available, and it is currently a common belief that the discharge character is tics of vertical gates have been detail
7、ed in the past century. This is definitely not the case, because of the accuracy of discharge measurement, and the small hydraulic models often used. Well known approaches include those of Boileau (1848), Bor-nemann (1871, 1880), containing summaries of the experiments of Lesbros et al. Haberstroh (
8、1890), Gibson (1920),Hurst and Watt (1925), Keutner (1932, 1935), Fawer (1937),Escande(1938), Gentilini(1941), and Smetana(1948). In these historical experimental studies, the exact geometrical configurations are often poorly specified, and the data are not always available. Details of gate fixation
9、 are also not described. The first modern study relating to free gate flow was conducted by Rajaratnam and Subramanya (1967). The coefficient of discharge was related to the difference of flow depths in the up- and downstream sections hCa, where o c h approach flow depth, coefficient of contraction
10、and o c agate opening. According to observations for both free and submerged flow C is exclusively a function of the relative gated opening a/h , and C increases slightly as a/h increases,o d o starting from C0.595. The effect of skin friction was stated d to be there as on for deviations between co
11、mputations based on the potential flow theory and observations. Rajaratnam (1977) conducted a second study on vertical gates in a rectangular channel 311mm wide, with gate openings between 26 and 101 mm. The axial free surface profile downstream of the gate section was shown to be self-similar. Nout
12、 sopoulos and Fanariotis (1978) pointed at the significant scatter of data relating to both coefficients of contraction and discharge. The deviations between observations and theory were attributed to the spatial flow characteristics, and the channels too small often used in laboratories. Nago(1978)
13、 made observation sina400 mm wide rectangular channel with a gate opening of 60 mm. C was found to decrease with increasing relative gate opening, from 0.595 for a/h 0 to 0.52 for a/h0.50.o o.Rajarat namand Humphries (1982) considered the free flow characteristics upstream of a vertical gate, as an
14、addition to previous studies. The channel used was 311mm wide, and gate openings were a25 and 50 mm. Their data refer to the up stream recirculation zone, the bottom pressure distribution, and the velocity field. Montes (1997) furnished a solution for the 2D outflow using conformal mapping, compared
15、 the coefficient of contraction with experiments, and identified deviations due to viscosity effects. The surface profiles up and downstream rom the gate section were studied, exclusively in terms of gate opening. Energy losses across a gate were related to the boundary layer development and the spa
16、tial flow features upstream from the gate. The pur- pose of this paper is to clarify several points of standard gate flow, including the discharge coefficient, the ridge position, the velocity and pressure distributions, and the shock wave development that was not at all considered up till now. Thes
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 标准闸门的底流 毕业设计外文翻译 标准 闸门 毕业设计 外文 翻译
链接地址:https://www.31ppt.com/p-3946201.html