智能充电器设计毕业设计.doc
《智能充电器设计毕业设计.doc》由会员分享,可在线阅读,更多相关《智能充电器设计毕业设计.doc(23页珍藏版)》请在三一办公上搜索。
1、智能充电器设计目 录第一章 绪论11.1 引言11.2 蓄电池充电理论11.3 蓄电池种类31.4 设计要求4第二章 系统设计思路分析62.1 智能化的实现62.2 充电方式分析62.3 芯片选用及介绍8第三章 系统硬件设计123.1 主要器件123.2 原理图及说明14第四章 系统软件设计164.1 程序流程图164.2 程序设计及说明17结论与体会20主要参考材料:21附录1:系统原理图22第一章 绪论1.1 引言中国是全球蓄电池的产销大国,蓄电池已有200多年的历史,是一种应用广泛的动力电源。具有原材料易得、价格低廉、可靠性好等优点,目前约有95%的市场占有率。蓄电池作为稳定电源和主要的
2、直流电源,需求广泛,用量巨大,与我们的社会生活息息相关。由于蓄电池维护简单、价格低廉、供电可靠、使用寿命长,广泛作为汽车、飞机、轮船等机动车辆或发电机组的启动电源。随着经济的发展,大容量蓄电池的应用迅速增加,人们希望能快捷、安全的对蓄电池进行充电。因此,为了适应市场需求,我们需要设计一种对于蓄电池的只能充电器。首先,目前市面上的充电器有许多的不足和缺陷,由于充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。而且,流行的铅酸密封蓄电池充电器大多采用三段式充电方法,充电时间长,效率低,对电池保护差,容易发生过充电或者充电不足的现象。过充电,可使
3、蓄电池发热,电解液失水;充电不足,可使蓄电池内化学反应不充分,并且长期充电不足会导致容量下降。以上两种情况都会降低蓄电池的使用寿命。由此可见,充电气性能的好坏都会直接影响到蓄电池的使用效果和使用寿命。1.2 蓄电池充电理论上世纪60年代中期,美国科学家马斯开口对蓄电池的充电过程做了大量的试验研究,并提出了以最低出气率为前提的蓄电池可接受充电曲线,如图所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线成为最佳充电曲线,如图1.1所示,从而奠定了智能充电方法的研究方向。t i 图1.1 最佳充电曲线由图1.1可以看出:初始充电电流
4、很大,但衰减很快。主要原因是充电过程中产生了极化现象,在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),是电池内部压力增大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现了所谓的极化现象。蓄电池是可逆的,其放电及充电的化学反应式如下 Pb+PbO2+2H2SO4=2PbSO4+2H2O 很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,这个
5、数值又因为电极材料、溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象就是极化现象。一般来说,产生极化现象有3个方面的原因。1) 欧姆极化:充电过程中,正负离子向两极迁移,在离子迁移过程中不可避免的受到一定的阻力,成为欧姆内阻。为了克服这个内阻,外加电压必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。2) 浓度极化:电流流过蓄电池时为维持正常的反应,最亮想的情况是电极表面反应物及时得到补充,生成物能及时离去。实际上,生成物和
6、反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液电解液浓度分布不均匀,这种现象称为浓度极化。3)电化学极化:这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-eMe+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属表面M+转入溶液,加速Me-eMe+反应进行。总有一个时刻,达
7、到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,于此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。这3种极化现象都是随着充电电流的增大而严重。1.3 蓄电池种类目前常用的四种化学电池是铅酸电池(PbSO4)、锂离子电池(Li+)、镍铬电池(NiCd)和镍氢电池(NiMH)。由于环保问题和对电池的要求越来越高等综合因素,推动了新电池技术的发展。镍铬电池的容量比镍氢电池或锂离子电池低,具有低阻抗特性,对于需要短时间大电流的应用场合很具吸引力。但镍铬电池如果未经充分放电又进行充电,或者长时间处
8、于小电流放电状态,就会产生枝状晶体,引起“记忆效应”,从而导致电池内阻变大,容量变小,缩短了电池寿命。如果在充电前进行完全放电,使每节电池的电压降到10V左右,就能消除引起“记忆效应”的枝状晶体,恢复电池的性能。镍氢电池具有较高的容量,但其自放电率也较高,约为镍铬电池的二倍。在初始阶段其放电率尤高(每天放掉1%)。所以镍氢电池不宜用于需要长时间保持电池容量的场合就充电方式而言,两种电池非常相似,都是以恒流的方式进行充电,可采用快速、标准或者涓流的方式进行充电。它们都能以超过2C(C为电池容量,单位为安培)的速率进行充电(但一般采用C/2速率)。由于存在内部损耗,充电效率一般小于100%,所以,
9、在采用C/2的速率充电时,通常需要两个多小时才能把电池充满。充电过程中的损耗随着充电速率和电池的不同而不同。在恒流充电时,电池电压会缓慢达到峰值(V/t变为0),镍氢电池需在这个峰值点终止快速充电,镍铬电池的充电须在峰值点后当电池电压开始下降时(V/t变为负)即终止快速充电,否则会导致电池内压力和温度上升而损坏电池。当充电速率大于C/2时,则要监测电池的电压和温度,因为当电池快充满时,电池的温度会急剧上升。对于镍铬电池和镍氢电池,还可以采用比较简便的涓流充电,这时只会造成极小的温升,不会损坏电池,也就无需终止涓流充电或者监测电池的电压。允许的最大涓流随着电池类型和环境温度的不同而不同,典型条件
10、下C/15较为安全。过去几年中,电池技术领域最突出的创新就是锂离子电池。相对于镍基电池而言,锂离子电池具有更高的容量。从容量/体积比来衡量,锂离子电池比镍氢电池高出10%30%,从容量/质量比来看,锂离子电池比镍氢电池高出近两倍。但锂离子电池对于过充电和欠充电很敏感。要达到最大容量就必须充电到最高电压,而过高的电压和过大的充电或放电电流又会造成电池的永久性损坏。如果多次放电至过低的电压则会造成容量损失,所以,充电和放电时都须限制其电压和电流,以保护电池不受损坏。锂离子电池的充电方式不同于镍基材料的化学电池,充电时需用一个电压电流源来进行充电。为了获得最大的充电量而又不损坏电池,须使电压保持在1
11、%的精度内。快速充电开始时,电池的电压比较低,充电电流即为电流极限。随着充电的进行,电池电压缓慢上升,最终当每节电池达到浮空电压42V时,此时即可终止充电。1.4 设计要求 在人们日常工作和生活中,充电器的使用越来越广泛。从随身听到数码相机,从手机到笔记本电脑,几乎所有用到电池的电器设备都需要用到充电器。充电器为人们的外出和出差办公提供了极大的方便。 单片机在电池充电器领域也有着广泛的应用,利用它的处理控制能力可以实现充电器的智能化。充电器的种类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。设计要求如下:1)具有预充、快充和慢充的功能2)具有自动断电的充电保护功能
12、3)具有充电完成报警提示的功能第二章 系统设计思路分析2.1 智能化的实现充电的实现,它包括两部分:一是充电过程的控制;二是需要提供基本的充电电压。在充电器电路中引入单片机的控制。它为什么需要实现充电器的智能化呢? 充电器实现的方式不同会导致充电效果的不同。由于充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90就停止大电流快充,而采用小电流涓流补充充电。手机电池的使用寿命和单次使用时间与充电过程密切相关。锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比,具有记忆
13、效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求比较苛刻,需要保护电路。为了有效利用电池容量,需将锂电池充电至最大电压,但是过压充电会造成电池损坏,这就要求较高的控制精度。另外,对于电压过低的电池需要进行预充,充电器最好带有热保护和时间保护,为电池提供附加保护。 一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当造成的记忆效应,即容量下降(电池活性衰退)现象。设计比较科学的充电器往往采用专用充电控制芯片配合单片机控制的方法。专用的充电芯片具备业界公认较好的-v 检测,可以检测出电池充电饱和时发出的电压变化信号,比较精确地结束
14、充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化。2.2 充电方式分析 蓄电池的常规充电方式有两种:浮充(又称恒压充电)和循环充电。浮充时要严格掌握充电电压,如额定电压为12V的蓄电池,其充电电压应在13.513.8V之间。浮充电压过低,蓄电池会充不满,过高则会造成过量充电。电压的调定,应以初期充电电流不超过0.3C(C为蓄电池的额定容量)为原则。循环充电,其初期充电电流也不宜超过0.3C,充电的安培小时数要略大于放电安培小时数。也可先以0.1C的充电速率恒流充电数小时,当充电安培小时数达到放电安培小时数的90时,再改用浮充电压充电,直至充满。以上为目前常用的铅酸蓄电池充电方式,
15、但这两种方式存在着一些不足之处。在充电过程中,电池电压逐渐增高,充电电流逐渐降低。由于恒压充电不管电池电压的实际状态,充电电压总是恒定的,充电电流刚开始比较大,然后按指数规律下降;采用快速充电可能使蓄电池过量充电,易导致电池损坏。对于循环充电而言,采用较小电流充电,充电效果较好。但对于大容量的蓄电池,充电时间就会拖得很长,时效低,造成诸多不便。通过对上述两种充电方式的分析比较,综合其优点设计出具有快充和慢充的智能型铅酸蓄电池充电器。该充电器采用单片机控制,充电过程分为快充、慢充及涓流充三个阶段,充电效果更佳。图2.1所示为该充电器的充电电流、电压曲线。涓流充 t3慢充 t2快 t1充t(h)o
16、0.09CI(A)、U(V)1C 图2.1 充电器的充电电流、电压曲线 从图2.1可以看出:在快充阶段(0t1),充电器以恒定电流1C对蓄电池充电,由单片机控制快充时间,避免过量充电;在慢充阶段(t1t2),单片机输出PWM控制信号,控制斩波开关通断,以恒定电压对蓄电池进行充电,此时充电电流按指数规律下降,当电池电压上升到规定值时,结束慢充,进入涓流充阶段;在涓流充阶段(t2t3),单片机输出的PWM控制信号,使充电器以约0.09C的充电电流对蓄电池充电,在这种状态下,可长时间对蓄电池充电,从而能最大限度地延长蓄电池寿命。2.3 芯片选用及介绍2.3.1 芯片选择目前市场上存在大量的电池充电芯
17、片,它们可直接用于进行充电器的设计。在选择具体的电池充电芯片时,需要参考以下标准。 1)电池类型:不同的电池(锂电池、镍氢电池、镍镉电池等)需选择不同的充电芯片。 2)电池数目:可充电池的数目。3)电流值:充电电流的大小决定了充电时间。4)充电方式:是快充、慢充还是可控充电过程。本设计要求充电快速且具有优良的电池保护能力,据此选择Maxim 公司的MAXl898 作为电池充电芯片。2.3.2 MAX1898芯片的特点 MAXl898 配合外部PNP 或PMOS 晶体管可以组成完整的单节锂电池充电器。MAX1898提供精确的恒流/恒压充电,电池电压调节精度为0.75,提高了电池性能并延长了电池使
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 充电器 设计 毕业设计
链接地址:https://www.31ppt.com/p-3945031.html