数形结合思想在解题中的应用毕业论文.doc
《数形结合思想在解题中的应用毕业论文.doc》由会员分享,可在线阅读,更多相关《数形结合思想在解题中的应用毕业论文.doc(8页珍藏版)》请在三一办公上搜索。
1、数形结合思想在解题中的应用张上兰湛江师范学院 数学与计算科学学院 广东 湛江 524048摘要:本文揭示了初中数学中的有理数、一次函数、一元一次方程、二元一次方程组、一元一次不等式(组)、二次函数、一元二次方程、一元二次不等式它们在图象上达到高度的统一,构建了数学的和谐美,充分显示了数形结合思想在解题中的魅力. 数形结合能不失时机地为学生提供恰当的形象材料,可以将枯燥的知识趣味化,把算理变明晰,把学生头脑中模糊的概念变清晰,把复杂的问题变得更加简单,经抽象的知识变得直观. 这样不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效
2、,从而让学生体会到数学教学充满乐趣.关键词:数形结合;几何意义;应用. 数形结合的思想方法是初中数学中一种重要的思想方法. 数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维与形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图形性质或其位置关系的讨论,或把图形间的待定关系转化为相关元素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答就是数形结合的思想方法. 数形结合的思想方法能扬数之长、取形之优,使得“数量关系”与“空间形式”珠连壁合,交相辉映. 下面我从四个方面谈谈数形结合思想方法在
3、初中数学教学解题中的应用.1 以“数”化“形” 由于“数”和“形”是一种对应,有些数量比较抽象,我们难以把握,而“形”具有形象,直观的优点,能表达较多具体的思维,起着解决问题的定性作用,因此我们可以把“数”的对应“形”找出来,利用图形来解决问题.我们能够从所给问题的情境中辨认出符合问题目标的某个熟悉的“模式”,这种模式是指数与形的一种特定关系或结构.这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法.数量问题图形化是数量问题转化为图形问题的条件,将数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为
4、图形问题.解一个数学问题,一般来讲都是首先对问题的结构进行分析,分解成已知是什么(条件),要求得到的是什么(目标),然后再把条件与目标相互比较,找出它们之间的内在联系.因此,对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题.1.1 有理数教学中体现的数形结合思想 数轴的引入是有理数体现数形结合思想的力量源泉. 由于对每一个有理数,数轴上都有唯一确
5、定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的(实数的大小比较也是如此). 相反数、绝对值概念则是通过相应的数轴上的点与原点的位置关系来刻画的. 尽管我们学习的是(有理)数,但要时刻牢记它的形(数轴上的点),通过渗透数形结合的思想方法,帮助学生正确理解有理数的性质及其运算法则. 相关内容的中考试题,应用数形结合的思想可顺利得以解决.1.2 不等式(组)中蕴藏着数形结合思想 北师大版八年级数学下册第一章内容是“一元一次不等式和一元一次不等式组”.教学时,为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结合 思想 解题 中的 应用 毕业论文
链接地址:https://www.31ppt.com/p-3944430.html