数学建模论文基于统计分析的葡萄酒评价模型.doc
《数学建模论文基于统计分析的葡萄酒评价模型.doc》由会员分享,可在线阅读,更多相关《数学建模论文基于统计分析的葡萄酒评价模型.doc(16页珍藏版)》请在三一办公上搜索。
1、基于统计分析的葡萄酒评价模型摘要随着经济的快速发展,人们对葡萄酒的品质要求越来越高。目前,葡萄酒的评价都是建立在评酒员感官评价的基础上。但是,由于评酒员的评价尺度、评价位置和评价方向的差异,导致了评价结果的不稳定性。因此,一个迫切的任务是如何从葡萄的理化指标和葡萄酒的理化指标来评价葡萄酒的质量。首先,利用秩和检验对两组评酒员的评价结果进行了显著性差异分析,得出了两组评酒员对红葡萄酒的评价结果具有显著性差异,对白葡萄酒的评价结果没有显著性差异,同时,使用方差分析得出第二组评酒员的评价结果更可信。其次,运用聚类分析法分析了酿酒葡萄的理化指标和葡萄酒质量的关系,把酿酒葡萄分成五个等级。再次,采用相关
2、性分析方法和回归分析法分析了酿酒葡萄和葡萄酒的理化指标之间的联系,找出了一些重要因子,并对这些重要因子进行了回归分析,获得了重要因子之间的确定性关系。最后,利用主成分分析和回归分析法找出了酿酒葡萄和葡萄酒的理化指标与葡萄酒质量的线性关系:红葡萄:;白葡萄:,通过该关系式可以大致的预测出葡萄酒的质量。关键词:秩和检验;主成分分析法;聚类分析法;相关性分析法;回归分析法一、问题重述与分析1.1问题重述随着经济的快速发展,人们对葡萄酒的品质要求越来越高。目前,葡萄酒的评价都是建立在评酒员感官评价的基础上。但是,由于评酒员的评价尺度、评价位置和评价方向的差异,导致了评价结果的不稳定性。因此,一个迫切的
3、任务是如何准确地评价葡萄酒的质量。为此,我们将解决以下问题:问题一:判断两组评酒员的的评价结果有无显著性差异,并找出更可信的一组结果;问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;问题三:分析酿酒葡萄与葡萄酒的理化指标之间的联系;问题四:分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。1.2问题分析本题是一个葡萄酒的评价问题。目前,葡萄酒的评价都是建立在评酒员的感官评价的基础上。感官评价主要包括外观、口感、香气和平衡四个方面,它们必然与酿酒葡萄和葡萄酒的理化指标存在重要的关联。首先,数据的处理。在经过分析和验证后,适当
4、修正题中的个别有误数据后,利用有效数据进行建模求解。另外,由于数据之间的单位有区别,为了便于比较和分析,我们对所以的数据都进行了标准化。其次,模型建立和求解。针对问题一,利用秩和检验对两组评酒员的评价结果进行显著性差异分析,并使用方差选择出比较可信的评价结果。针对问题二,运用聚类分析法分析酿酒葡萄的理化指标和葡萄酒质量的关系,以此评判酿酒葡萄的等级。针对问题三,采用相关性分析方法分析酿酒葡萄和葡萄酒的理化指标之间的联系,找出了一些重要因子,以重要因子进行了回归分析,获得了重要因子之间的确定性关系。针对问题四,利用主成分分析和回归分析法找出了酿酒葡萄和葡萄酒的理化指标与葡萄酒质量的一些线性性关系
5、。最后,模型检验,利用酿酒葡萄和葡萄酒的理化指标与葡萄酒质量的线性性关系检验葡萄酒的质量。二、符号说明符号意义第组第个评酒员对第种红葡萄酒的总评分第组第个评酒员对第种白葡萄酒的总评分第组评酒员对第种红葡萄酒的平均总评分第组评酒员对第种白葡萄酒的平均总评分第组评酒员对第种红葡萄酒的方差第组评酒员对第种白葡萄酒的方差三、模型假设1)评酒员都具有较好的资质水平;2)所有芳香物质对葡萄酒的质量具有正影响;3)仅仅考虑酿酒葡萄与葡萄酒理化指标中的一级指标;4)葡萄酒的酿制过程对葡萄酒的质量没有影响。四、模型建立与求解4.1 问题一4.1.1 分析与建模问题一要求我们分析两组评酒员的评价结果是否具有显著性
6、差异,并判断哪组数据更可靠。评酒员对葡萄酒的评价是根据外观、口感、香气和平衡四个方面进行感官评价的。为了研究的简单,我们仅以该四个方面的评价分数之和作为葡萄酒的质量。显著性差异的分析法主要包括检验、检验、秩和检验和符号检验等等。由于本题中的样本量较小,总方差未知,我们采用秩和检验对两组评酒员的评价结果进行显著性差异的分析。秩和检验的具体步骤: 第一步:将两个样本数据混合并由小到大进行等级排列(最小的数据秩次编为1,最大的数据秩次编为);第二步:把容量较小的样本中各数据的等级相加,即秩和,用表示;第三步:把值与秩和检验表中某显著性水平下的临界值相比较,如果,则两样本差异不显著;如果或,则表明两样
7、本差异显著。 关于可信性结果的判断,由于我们假设评酒员都具有较高的水平,因此,评价结果波动小的一组的可靠性强一些,故我们使用方差分析判断两组结果的可信性。4.1.2 模型求解为了解决两组红葡萄酒的品酒员的评价结果有无显著性差异及哪个结果更可信,我们运用公式,求得样品的平均分数,再根据公式,求得各组样品分数的方差,结果如表1和图1所示。从中可以看出,两组红葡萄酒的评价结果无显著性差异,两组白葡萄酒的评价结果有显著性差异;第一组样品的方差波动较大,表现出了结果的不稳定性,所以第二组的结果更可信。表1:红葡萄酒中的数据处理样品编号第一组第二组秩和检验177.923.2968.173.690.2410
8、275.844.167414.60.0368375.6128.2474.627.640.0749476.937.8971.237.160.7048581.523.6572.112.290.9093675.520.4566.319.010.0574774.237.9665.356.410.3058872.328.016658.60.1115980.495.6478.223.160.32431079.863.3668.832.560.01871171.479.0461.634.240.04061272.4126.0468.322.610.00171373.942.0968.813.760.0169
9、1477.114.2972.620.840.81881578.448.6465.737.210.05331667.374.0169.918.090.02511780.334.6174.58.250.16091876.727.2165.445.240.17221976.423.4472.649.640.06352076.645.0475.835.160.38322179.257.9672.231.960.42652279.448.2471.621.840.08782377.410.4477.122.290.00352476.134.6971.59.650.13822579.595.8568.23
10、9.3612674.392.617237.40.569727773271.518.450.0012表2 第二组白葡萄酒的数据处理样品编号第一组第二组秩和检验1828377.923.290.1503274.2180.9675.844.160.7618378.359.8175.6128.240.8793479.440.2476.937.890.3834571113.881.523.650.0166668.4146.4475.520.450.3062777.535.2574.237.960.2109871.4165.2472.328.010.5443972.983.4980.495.640.0633
11、1074.3191.4179.863.360.40481172.3159.4171.479.040.76191263.3104.2172.4126.040.04481365.9153.6973.942.090.22531472102.877.114.290.42491572.4118.4478.448.640.18541674160.267.374.010.19841778.8129.7680.334.6111873.1140.8976.727.210.64901972.241.7676.423.440.12962077.857.9676.645.040.54472176.4155.4479.
12、257.960.87922271124.879.448.240.08832375.939.2977.410.440.59352473.3100.0176.134.690.82032577.130.4979.595.850.13002681.365.6174.392.610.14952764.8129.9677320.01102881.372.4179.622.840.2234 图1 红葡萄酒质量的方差图 图2 白葡萄酒质量的方差图4.2问题二4.2.1分析与建模由问题一的结果可知,第二组评价结果比较可信,因此我们在接下来的分析中都采用第二组评价的数据。针对问题二,由于葡萄的理化指标种类很多,我
13、们运用运用聚类分析法,对这些酿酒葡萄进行分类,然后加入葡萄酒质量评分,进行分级。聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k
14、-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。各指标之间具有一定的相关关系。 4.2.2模型的求解为了根据葡萄的理化指标和葡萄酒的质量对葡萄进行分级,由附表2可以求得每个重要指标下
15、的的每种含量的平均值。用SPSS软件进行聚类分析得到有关酿酒葡萄分类的树形图,如图3和图4, 因此,我们可以得到酿酒葡萄的分级,红葡萄分为五级,白葡萄分为五级,见表3和表4.葡萄样品44葡萄样品2727葡萄样品1515葡萄样品2222葡萄样品1212葡萄样品1818葡萄样品66葡萄样品77葡萄样品1717葡萄样品2424葡萄样品55葡萄样品1313葡萄样品1919葡萄样品2020葡萄样品2626葡萄样品2525葡萄样品1111葡萄样品1616葡萄样品2121葡萄样品22葡萄样品99葡萄样品2323葡萄样品88葡萄样品1414葡萄样品11葡萄样品1010葡萄样品33图3 红葡萄的层次聚类分析的树
16、形图 葡萄样品 5葡萄样品 20葡萄样品 9葡萄样品 28 葡萄样品23葡萄样品26葡萄样品2葡萄样品19葡萄样品10葡萄样品25葡萄样品12葡萄样品14葡萄样品4葡萄样品22葡萄样品17葡萄样品21葡萄样品8葡萄样品11葡萄样品16葡萄样品3葡萄样品6葡萄样品18葡萄样品7葡萄样品15葡萄样品24葡萄样品1葡萄样品13葡萄样品27图4 红葡萄的层次聚类分析的树形图表3 红葡萄质量分级表红葡萄分级酒样品第一级样品2、9、23、8、14、1第二级样品3、10第三级样品13、14、20、26、25、11、16、21第四级样品4、7、15、22第五级样品12、18、6、7、17、24、5表4 白葡萄
17、质量分级表白葡萄分级酒样品第一级样品9、20、5第二级样品21、17、22、4、14、12、25、10、19、2、26、23第三级样品27、13、1第四级样品3、16、11、8第五级样品24、15、7、18、64.3问题三4.3.1分析与建模我们将使用回归分析法和相关性分析法分析了酿酒葡萄与葡萄酒的理化指标之间的联系。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中
18、,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.它基于观测数据建立变量间适当的依赖关系,以分析数据内在规律,并可用于预报,控制等问题。相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法相关关系是一种非确定性的关系,例如,以和分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则与显然有关系,而又
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 论文 基于 统计分析 葡萄酒 评价 模型
链接地址:https://www.31ppt.com/p-3944359.html