数学专业毕业论文—浅析解析函数与实二元函数之间的关系07041.doc
《数学专业毕业论文—浅析解析函数与实二元函数之间的关系07041.doc》由会员分享,可在线阅读,更多相关《数学专业毕业论文—浅析解析函数与实二元函数之间的关系07041.doc(18页珍藏版)》请在三一办公上搜索。
1、+学校代码 学号 分 类 号 密级 本科毕业论文 题 目 :浅析解析函数与实二元函数之间的关系 (中、英文)The Analysis of relationship between Analytic function and Real Dual function 作 者 姓 名 专 业 名 称 学 科 门 类 指 导 教 师 提交论文时间 成绩等级评定 摘 要 了解解析函数与实二元函数之间的关系有便于判断、构造解析函数.解析函数又是复变函数研究的重要对象,所以理解它们之间的关系也是非常重要的.本文主要分为四个部分,首先给出了解析函数的概念,在阐述了解析函数与某些实二元函数之间的关系主要是判断函
2、数的解析性,证明解析函数的实虚部为调和函数说明了解析函数由实二元函数构成,在给出了调和函数确定解析函数的一些方法,最后阐述了解析函数与实二元函数关系的物理意义. 关键字:解析函数;实二元函数;调和函数;柯西-黎曼方程. Abstract Having a good knowledge of understanding the relationship between analytic functions and real binary function can contribute to determine and structure of analytic functions. Howeve
3、r, analytic function is an important object of study of complex function, so it is very important to understand the relationship between them. This article mainly is divided into four parts: First of all, it gives the concept of analytic function; The second section elaborated the analytic function
4、and some real equivalence relation between binary function, it mainly talks about the analytic judgment function, and proves real imaginary part of analytic function for harmonic functions illustrate analytic function consists of real dual function; Next gives the harmonic function to determine some
5、 of the methods of analytic functions, and finally elaborated analytic functions with real dual function of the physical meaning.Key word: analytic function;real dual function ;harmonic function;Cauchy-Riemann equations. 目 录摘 要IAbstractII目 录III引言11.解析函数的相关概念12.解析函数与实二元函数之间的关系13.解析函数与调和函数的关系43.1 调和函数
6、43.2 证明解析函数的实部虚部为调和函数53.3由调和函数确定解析函数63.4 解析函数与调和函数之间的等价关系83.5利用解析函数求调和函数的稳定点94.解析函数与实二元函数关系在物理上的意义94.1 平面流速场的复势94.2 平面静电场的复势10参考文献12谢 辞13引言:利用实二元函数可以比较容易的判别、构造解析函数,然而解析函数在求实函数的积分、n阶导数、实函数在某区间根的个数和调和函数的最大值问题上都有着重要的应用,所以了解解析函数与实二元函数之间的关系是非常重要的.本文从解析函数的概念,解析函数与具有一定约束条件实二元函数之间的关系,解析函数与调和函数之间的关系以及他们在物理上的
7、意义四个方面进行了阐述,但重点介绍了解析函数与具有一定约束条件的实二元函数、调和函数之间的关系,要了解它们之间的关系,首先我们来了解一下什么是解析函数.1.解析函数的相关概念 如果函数在区域内可微,则称为区域内的解析函数,或称函数在区域内解析.函数在某点解析,是指函数在该点的某一邻域内解析;函数在某闭域上解析,是指函数在包含该闭域的某区域内解析. 解析函数,其中、满足C-R方程. 解析函数的映射特征:对于解析函数()来说,它将的实部映射为,将的虚部映射为Ary;对于解析函数来说它将映射为的实部,将Ary映射到的虚部.2.解析函数与实二元函数之间的关系我们从上面给出的解析函数的相关概念可知,要通
8、过概念来判别一个复变函数是否为一解析函数是相当困难的,那么我们能否找到判别解析函数的简便方法呢?现在我们就来介绍一下用实二元函数判别解析函数的几种简便方法.定理1 设函数定义在区域内,则函数在区域内解析函数的充要条件是:二元函数、在区域内可微; 、在区域内满足柯西-黎曼方程. 证明:必要性 对任意的,我们都记, 因为函数在区域内解析,所以有=,由此可得 .从而有其中.得,.由实二元函数可微定义知,在由的任意性知,、在区域内可微.现在选择两个方向求的值.当时,有.当时,有.比较两式可得.充分性 对,由、在内可微,其中.记由C-R方程得.给等式两边同除以得, 又因为,所以有.又由的任意性得在内解析
9、该定理给出了一种判断解析函数的方法,就要看实二元函数是否在某区域内可微性并是否在该区域内满足柯西黎曼方程. 定理2 设函数定义在区域内,则函数在区域内解析的充要条件是:在区域内连续;、在内满足柯西黎曼方程. 证明:必要性 因为在区域内是解析的,在根据解析函数的无穷可微性可以得到,在区域D内连续,由此可以得到在区域D内连续的,然后再根据上个定理的必要性的证明,我们就可以知道、满足C.-R.方程成立的. 充分性 因为在区域D内是连续的,在根据二元函数可微性的充分条件我们可以知道,实二元函数在区域D内是可微的,又知、满足C-R方程,再根据上一定理的充分性知,函数在区域D内解析.该定理主要是判断函数的
10、解析性和不解析性,就是要看实二元函数、的一阶偏导数是否存在且连续,并且两个二元函数是否满足柯西黎曼方程这个定理的提出使解析函数的判别变的非常的容易,现在我们就来看几道用该定理判别解析函数的例子.例1.讨论下列函数的解析性 解: 这几个偏导数在平面上处处连续,但是它们只在上满足柯西黎曼方程所以在平面上处处不解析 这几个偏导数在平面上处处连续,且在整个平面上满足柯西黎曼方程所以在整个平面上处处解析 这几个偏导数在平面上处处连续,且在整个平面上满足柯西黎曼方程所以在整个平面上处处解析例2.设是区域内的解析函数,试求是否也是一解析函数 解:因为是区域内的解析函数. 所以、在区域上可微,且满足柯西-黎曼
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 专业 毕业论文 浅析 解析 函数 二元 之间 关系 07041
链接地址:https://www.31ppt.com/p-3944321.html