数学专业毕业论文广义逆矩阵的求法探讨.doc
《数学专业毕业论文广义逆矩阵的求法探讨.doc》由会员分享,可在线阅读,更多相关《数学专业毕业论文广义逆矩阵的求法探讨.doc(25页珍藏版)》请在三一办公上搜索。
1、广义逆矩阵的求法探讨the seeking of the dharma and research into generalized inverse matrix 专 业: 数学与应用数学作者: 指导老师: 学校二一 摘 要本文介绍了广义逆矩阵的定义,讨论了由Moore-Penrose方程所定义的各种广义逆的性质,在广义逆矩阵的初等变换法和满秩分解法的基础上,研究了几种特殊的广义逆矩阵的计算方法.关键词: 广义逆矩阵;满秩分解;消元;初等变换法 Abstract This article discusses the system of generalized Inverse matrices d
2、efined, discussed by the Moore-Penrose equation is defined by the nature of the various Generalized inverse, generalized inverse matrix elementary transformation and full rank decomposition, studied several particular generalized inverse matrix calculatio.Keywords: Generalized inverse matrix; full r
3、ank decomposition; elimination; elementary transformation目录摘 要IAbstractII0 引言11 广义逆矩阵的概念与定理82 广义逆矩阵的计算方法82.1 广义逆矩阵的奇异值分解法82.2 广义逆矩阵的最大值秩分解法92.2极限法求广义逆矩阵92.3广义逆矩阵的满秩分解法112.4 初等变换法求广义逆矩阵15参考文献210 引言矩阵逆的概念只对非奇异方阵才有意义. 但是,在实际问题中,我们碰到的矩阵并不都是方阵,即使是方阵,也不都是非奇异的。 因此,有必要推广逆矩阵的概念.为此,本文给出了广义逆矩阵的定义,并利用广义逆的性质,给出其
4、计算方法。1 广义逆矩阵的概念与定理定义1.1 设是的矩阵,若的矩阵满足如下四个方程的全部或者一部分,则称为的广义逆矩阵,简称广义逆. (1.1) (1.2) (1.3) (1.4) 则称是的逆,记为.如果某个只满足(1.1)式,为的1广义逆,记为G1;如果另一个满足(1.1),(1.2)式,则称为的1,2广义逆,记为1,2;如果1,2,3,4,则是逆等.下面介绍常用的5种1,1, 2,1, 3,1,4,1,2,3,4每一种广义逆矩阵又都包含着一类矩阵,分述如下:(1) 1中任意一个确定的广义逆,称作减号广义逆,或g逆,记为;(2) 1,2中任意一个确定的广义逆,称作自反减号逆,记为;(3)
5、1,3中任意一个确定的广义逆,称作最小范数广义逆,记为;(4) 1,4中任意一个确定的广义逆,称作最小二乘广义逆,记为;(5) 1,2,3,4:唯一一个,称作加号逆,或,记为.定义1.2 设是的矩阵(, 当时,可以讨论),若有一个的矩阵(记为)存在,使下式成立,则称为的减号广义逆或者逆: (1.5)当存在时,显然满足上式,可见减号广义逆是普通广义逆矩阵的推广;另外,由得可见,当为的一个减号广义逆时,就是的一个减号广义逆. 定义1.3 设 的特征值为则称为矩阵的正奇异值,简称奇异值.定义1.4 设矩阵,如果时存在;或者当时,存在有,称这两种长方阵为最大秩方阵(满秩方阵),前者又称行最大秩矩阵(行
6、满秩矩阵),后者又称为列最大秩矩阵(列满秩矩阵).定义1.5 设是矩阵, 若有矩阵满足(或), 则称为的右逆(或左逆), 记为(或).定理1.1 设是的矩阵,则的逆存在且唯一. 证明 先证的存在性. 设的奇异值分解其中,是的非零奇异值,与是酉矩阵.令容易验证满足四个方程,因此存在. 下面证的唯一性. 假定也是满足4个方程,则 因此, 说明是唯一的,且若是非奇异矩阵,容易验证满足4个方程,此时.由此可见逆把逆推广到所有矩阵(甚至零矩阵).定理1.2 设,存在阶的可逆矩阵及阶可逆矩阵,使则阶矩阵使得的充分必要条件是其中分别是阶任意矩阵.证明 先证必要性,由条件有阶及阶可逆矩阵,使那么 根据应满足的
7、, 有再令 分块如题设要求,代入上式所以,于是有得到再证充分性,由于则 引理1.1 对于任意的矩阵,它的减号逆总存在,但不唯一,并且是的一个减号逆【1,2】.引理1.2 对于任意的矩阵,它的极小范数总存在,但不唯一,并且是的一个极小范数逆【12】.引理1.3 对于任意矩阵,它的最小二乘逆总存在 ,但不唯一,并且它是的一个最小二乘逆【1,2】.引理1.4 对于任意矩阵,它的加号逆总存在,并且唯一. 其中这里是的满秩分解式【1,2,3】.定理1.3 是 矩阵 , 若是行满秩矩阵 ,则总有;是列满秩矩阵,则总有;,则总有,其中是 的满秩分解式.定理1.4 设则可将做满秩分解(或的最大秩分解)其中是阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 专业 毕业论文 广义 矩阵 求法 探讨
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3944291.html