数值积分算法与MATLAB实现毕业论文设计.doc
《数值积分算法与MATLAB实现毕业论文设计.doc》由会员分享,可在线阅读,更多相关《数值积分算法与MATLAB实现毕业论文设计.doc(63页珍藏版)》请在三一办公上搜索。
1、毕业设计(论文)设计(论文)题目:数值积分算法与MATLAB实现摘 要在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理
2、论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。【关键词】数值积分 牛顿-科特斯求积公式 高精度求积公式 MATLAB软件ABSTRACTWhen the solution of the definite integral of some function values,because the original function is very complex and difficult to find the elementary function expression, the integral is
3、 difficult to accurately calculate, only managed to find the approximate value, and the case is small that allows to direct interface with the Newton - Leibniz formula to calculate the definite integral. Numerical integration is an effective method to solve such problems. The numerical integration i
4、s an important branch of numerical analysis; therefore, exploring the approximate calculation of the numerical integration method has obvious practical significance. This article departure from the numerical integration problem, described in detail some important numerical integration methods.This p
5、aper has introduced detail the Newton - Coates quadrature formula, and in order to improve the calculation accuracy of numerical integration formulas, More precise formulas have Romberg quadrature formulas and the Gauss - Legendre quadrature formula. In addition to the study of these numerical integ
6、ration algorithm theory, the article also involve what these numerical integration algorithm be programmed by matlab software on the computer, and an example is calculated with a variety of quadrature formulas, finally analysis and comparison to various quadrature formulas calculation error.【Key wor
7、ds】 Numerical integration Newton-Cotes quadrature formula High-precision quadrature formula Matlab software目 录前 言1第一章 牛顿-科特斯求积公式2第一节 数值求积公式的构造2第二节 复化求积公式9第三节 本章小结12第二章 高精度数值积分算法13第一节 梯形法的递推13第二节 龙贝格求积公式14第三节 高斯求积公式17第四节 高斯-勒让德求积公式19第五节 复化两点高斯-勒让德求积公式22第六节 本章小结23第三章 各种求积公式的MATLAB编程实现与应用24第一节 几个低次牛顿-科
8、特斯求积公式的MATLAB实现24第二节 复化求积公式的MATLAB实现28第三节 龙贝格求积公式的MATLAB实现33第三节 高斯-勒让德求积公式的MATLAB实现34第五节 各种求积算法的分析比较36第六节 本章小结38结 论39致 谢40参考文献41附 录43一、英文原文43二、英文翻译52前 言对于定积分,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式可以计算定积分的值,但在很多情况下的原函数不易求出或非常复杂。被积函数的原函数很难用初等函数表达出来,例如等;有的函数的原函数存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式。因此能够借助牛顿-莱布尼兹公式计算定
9、积分的情形是不多的。另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值。因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算。而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值。微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节。数值积分是数学上重要的课题之一,是数值分析中重要的内容之一,也是应用数学研究的重点。随着计算机的出现,近几十年来,对于数值积分问题的研究已经
10、成为一个很活跃的研究领域。现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义。国内外众多学者在数值积分应用领域也提出了许多新方法。在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等。通过这个课题的研究,我们将会更好地掌握运用数值积分算法求特殊积分函数的定积分的一些基本方法、理论基础;并且通过matlab软件编程的实现,应用于实际生活中。第一章 牛顿-科特斯求积公式第一节 数值求积公式的构造大多数实际问题的积分是需要用数值积分方法求出近似结果的。数值积
11、分原则上可以用于计算各种被积函数的定积分,无论被积函数是解析解形式还是数表形式,其基本原理都是用多项式函数近似代替被积函数,用多项式的积分结果近似代替对被积函数的积分。由于所选多项式形式的不同,可以有许多种数值积分方法。而利用插值多项式来构造数值求积公式是最常用的一种方法。对于积分,用一个容易积分的函数去代替被积函数,这样的自然以多项式为最佳,因为多项式能很好的逼近任何连续函数,而且容易求出其原函数。一、 求积公式的推导在积分区间上取有限个点,作的次插值多项式,其中,为次插值基函数。用近似代替被积函数,则得 若记 则得数值求积公式 其中称为求积系数,称为求积节点。则称该求积公式为插值型求积公式
12、。知道了插值型求积公式以及其构造方法。为了便于计算与应用,常将积分区间的等分点作为求积节点,这样构造出来的插值型求积公式就称为牛顿-科特斯(Newton-Cotes)求积公式。在积分区间上取个等距节点,其中,做次拉格朗日插值多项式,因为,所以 记 截去第二项得 显然与无关,只与节点有关。令,则当时,于是 而 从而得记 则 故求积公式可写成 这就是牛顿-科特斯求积公式,其中称为科特斯系数。部分科特斯系数取值如下表1.1科特斯系数具有以下特点1(1) (2) (3)当 8 时,出现负数,稳定性得不到保证。而且当 较大时,由于Runge现象,收敛性也无法保证。故一般不采用高阶的牛顿-科特斯求积公式。
13、 (4)当 7 时,牛顿-科特斯公式是稳定的。表1.1 部分科特斯系数表知道了什么是牛顿-科特斯求积公式,下面我们来看它的误差估计,首先来看看牛顿-科特斯求积公式的截断误差。我们知道牛顿-科特斯求积公式是一个插值型数值求积公式,当用插值多项式代替进行积分时,其截断误差即积分真值和近似值之差,推导如下,由插值多项式的误差估计可知,用次拉格朗日多项式逼近函数时产生的误差为 其中。对上式两边从到作定积分,便可得出它的截断误差 二、几个低次牛顿-科特斯求积公式从上面的讨论可知,用多项式近似代替被积函数进行数值积分时,虽然最高次数可是8,但是8次多项式的计算式非常繁杂的。常用的是下面介绍的几种低次多项式
14、。1、 矩形求积公式定义1.1 在牛顿-科特斯求积公式中,如果取,用零次多项式(即常数)代替被积函数,即用矩形面积代替曲边梯形的面积,则有 称式为矩形求积公式根据牛顿-科特斯求积公式的误差理论式,矩形求积公式的误差估计为2、梯形求积公式定义1.21 在牛顿-科特斯求积公式中,如果取,用一次多项式代替被积函数,即用梯形面积代替曲边梯形的面积,则有其中,,查表可得代入上式得出 称式为梯形求积公式由于用一次多项式近似代替被积函数,所以它的精度是1。也就是说,只有当被积函数是一次多项式时,梯形求积公式才是准确的。根据牛顿-科特斯求积公式的误差理论式,梯形求积公式的误差估计为是被积函数二阶导数在点的取值
15、,3、辛浦生求积公式定义1.32 在牛顿-科特斯求积公式中,如果取,用二次多项式代替被积函数,即曲边用抛物线代替,则有其中,,查表可得,代入上式得出 称式为辛浦生求积公式,也称抛物线求积公式。它的几何意义是:用过3个点,的抛物线和,构成的曲边梯形面积,近似地代替了被积函数形成的曲边和,构成的曲线梯形面积。下面对辛浦生求积公式的误差进行估计。由于辛浦生求积公式是用二次多项式逼近被积函数推得的,原则上它的代数精度为2.但因多项式次数是偶数,根据定理1.1可知,它的代数精度为3过,和3个点,构造一个的三次Lagrange插值多项式,且使。根据Lagrange插值余项定理得 对上式两边从到进行积分,即
16、可得到 根据定积分中值定理可知,在上总有一点满足下述关系:通过变量代换,,很容易求得把这个结果代入式,便得出辛浦生求积公式的误差估计式 4、科特斯求积公式由于和时具有相同的迭代精度,但是时计算量小,故的Newton-Cotes积分公式用的很少。定义 1.4 在牛顿-科特斯求积公式中,如果取时,牛顿科特斯公式为 称式为科特斯求积公式。同理根据式可求得其误差估计式 三、求积公式的代数精度如果被积函数为任意一个次数不高于次的多项式时,数值求积公式一般形式的截断误差;而当它是次多项式时,则说明数值求积公式具有次代数精度。一个数值求积公式的代数精度越高,表示用它求数值积分时所需逼近被积函数的多项式次数越
17、高。定理 1.13 牛顿-科特斯求积公式的代数精度等于,当为偶数时,牛顿-科特斯求积公式的代数精度等于证明 如果被积函数是一个不大于次的多项式,则,即;而当时任意一个次多项式时,故 所以,按照代数精度的定义可知,一般情况下,牛顿-科特斯求积公式的代数精度等于。当为次多项式时, 牛顿-科特斯求积公式的代数精度至少等于。若设是一个次多项式,这时为一常数,而因此,只要证明在是偶数时,定理就可得证。为此,设,令,于是由于为偶数,不妨设,为正整数,则,于是再引进变换,则,代入上式右侧,得出 最后的积分中被积函数是奇函数,所以积分结果等于零,定理1.1得证。第二节 复化求积公式前面导出的误差估计式表明,用
18、牛顿-科特斯公式计算积分近似值时,步长越小,截断误差越小。但缩小步长等于增加节点,亦即提高插值多项式的次数。龙格现象表明,这样做并不一定能提高精度。理论上已经证明,当时,牛顿-科特斯公式所求得的近似值不一定收敛于积分的准确值,而且随着的增大,牛顿-科特斯公式是不稳定的。因此,实际中不常用高阶牛顿-科特斯公式。为了提高计算精度,可考虑对被积函数用分段低次多项式插值,由此导出复化求积公式。一、复化梯形求积公式在实际应用中,若将积分区间分成若干个小区间,在各个小区间上采用低次的求积分式(梯形公式或辛浦生公式),然后再利用积分的区间可加性,把各区间上的积分加起来,便得到新的求积公式,这就是复化积分公式
19、的基本思想。以梯形面积近似曲边梯形面积,即用梯形公式求小区间上积分的近似值。这样求得近似值显然比用梯形公式计算精度高。定积分存在定理表明,只要被积函数连续,当小区间的长度趋于零时,小梯形面积之和即就趋于曲边梯形面积的准确值,即定积分的准确值。定义 1.54 将积分区间进行等分,记为,在每个小区间 上用梯形公式求和,得若将所得的近似值记为,整理得 称式为复化梯形公式。记为 当时, 即收敛于如果,则在小区间上,梯形公式的截断误差为 因此因为区间上连续,由介值定理知存在,使得从而有 这就是复化梯形公式的截断误差。下面讨论复化梯形公式的数值稳定性。设计算函数值时产生的误差为,则用式计算结果的误差为因此
20、,无论为多大,复化梯形公式都是稳定的。二、复化辛浦生求积公式如果用分段二次插值函数近似被积函数,即在小区间上用Simpson公式计算积分近似值,就可导出复化Simpson公式。定义1.65 将积分区间分成等分,分点为, 在每个小区间上。用Simpson公式求积分,则有 求和得 整理后得到 式就称为复化辛浦生求积公式。记为 如果, 则由Simpson插值余项公式可得复化公式的截断误差为 因为为连续,故存在, 使得代入上式得 式表明,步长越小,截断误差越小。与复化梯形公式的分析相类似,可以证明,当时,用复化Simpson公式所求得的近似值收敛于积分值,而且算法具有数值稳定性。三、复化科特斯求积公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 积分 算法 MATLAB 实现 毕业论文 设计
链接地址:https://www.31ppt.com/p-3944160.html