复合材料回收技术进展论文.doc
《复合材料回收技术进展论文.doc》由会员分享,可在线阅读,更多相关《复合材料回收技术进展论文.doc(34页珍藏版)》请在三一办公上搜索。
1、复合材料回收技术进展摘要:复合材料虽然在汽车、航空航天和再生能源等工业领域得到了广泛的应用,但是由于复合材料自身固有的异相性,特别是热固性树脂基复合材料,致使复合材料没有得到妥善的回收。废弃物处理的相关法规在当前和以后都会要求将汽车、风力发电机和飞机等使用的工业材料在报废后能够得到妥善的回收,工业材料的最终回收再利用可以达到节省资源和能源的目的。目前多项复合材料回收技术已相继研发出来,其中大多关注增强材料的回收,但都未完成商业化生产,主要包括以下三种方法:机械回收、热回收和化学回收。复合材料回收技术商业化最大的阻碍在于再生材料的市场需求匮乏、高昂的回收生产成本以及再生材料性能的降低。为了更好的
2、推进复合材料回收技术发展,需要加大回收技术的创新性研发力度,研发发出更加高效的复合材料分离技术。通过复合材料设计、复合材料生产生产、废弃物管理、新研发的分离和回收技术这五方面的共同努力,在不久的将来复合材料的回收就会真正的实现,并进一步开发出更易回收的复合材料。一、 引言复合材料为设计工程师们提供了高性能和长寿命的材料,凭借其高强、轻质和低维护的优点复合材料在工业领域得到了广泛的应用,为交通运输工具节能减排做出的贡献最为突出。一般来讲,复合材料可以分为以下三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)、陶瓷基复合材料(CMC)。按照增强材料形态,复合材料又可分为:颗粒增强复合材料、
3、纤维增强复合材料和叠层复合材料。以上两种复合材料的分类方式见图1。准确的统计全球复合材料的产量有很大难度,估计2000年的全球产量大约为700万吨,2006年很有可能便已经达到了1000万吨1。在众多种类的复合材料中,聚合物基复合材料占居了绝大多数的市场份额,其中热固性复合材料就超过了2/3,不过最近几年热塑性复合材料的市场占有率正在快速增长。按照增强材料分类类按照基体分类陶瓷基复合材料(CMC)有机基体复合材料(OMC)金属基复合材料(MMC)聚合物基复合材料(PMC)碳基复合材料(CMC)热塑性复合材料热固性复合材料结构复合材料颗粒增强复合材料料纤维增强复合材料料叠层复合材料夹芯复合材料碳
4、纤维复合材料玻璃纤维复合材料图1 复合材料分类若按产值计算,目前两个较大的复合材料应用领域分别为汽车工业(超过30%)和航空工业(超过20%)。图2列举了2000年复合材料产值在不同应用领域的占比。复合材料首先在国防和航空领域得到了应用,当前绝大多数的战斗机所使用复合材料的重量比已经超过了50%。复合材料最近已经成为新一代复合材料飞机的主要材料,例如波音梦幻客机787(复合材料53%)、空客A380(复合材料25%)以及未来的空客A350(复合材料53%)。提高汽车燃油效率的关键手段就是减轻重量,作为复合材料应用最多的领域,复合材料(车身、内饰、底盘、引擎盖和电气组件)的使用量增长迅猛。此外,
5、在体育休闲、造船、风力发电和近海油气田开发中也得到了广泛应用。图3为2000年复合材料在欧洲各国的市场份额分解图。如图所示,德国的使用量最大,意大利和法国紧随其后,这三个国家一共占有欧洲60%的市场份额,与这三个国家强大的汽车和航空航天工业密不可分。图2 复合材料在不同领域的应用比例图3 复合材料在欧洲各国的市场份额工业材料的回收再利用有助于整个工业进程的可持续发展。目前,金属、玻璃、热塑性塑料等众多工业材料都得到了很好的回收再利用,而作为特种材料的复合材料却没有(包括基体和增强材料)。究其原因,主要是由复合材料的基体和增强材料的异相性造成的,其中热固性树脂基复合材料更加难以再循环利用。当下和
6、以后的废弃物处理的相关法规都要求将报废车辆中的所使用的工业材料进行回收再利用。回收循环利用可以节约复合材料用增强材料和基体的生产资源和能源消耗。碍于技术和经济可行性两方面因素,目前主流复合材料回收技术仅有极少数实现了商业化生产。复合材料回收中最基本的问题就是如何将其分解成均匀的颗粒,分离过程一直受到纤维或其它增强材料、基体(尤其是热固性树脂基体)或粘合剂的制约。因此,回收过程绝大多数情况下只能将复合材料转化为热量,极少能分离出纤维。最近欧盟关于报废车辆2、报废电子电气设备3处理的指导性意见的出台,必将加大复合材料回收技术的市场需求,并最终实现商业化生产。各种各样的复合材料回收技术在大量的研究过
7、程中应运而生,主要有以下三类技术:机械回收、热回收和化学回收,这些技术都有待于商业化推广。机械回收要先将复合材料切碎和造粒,然后再筛分成可再次使用的富纤维和富树脂颗粒,该方法需要消耗大量能源而且产品性能较低。热回收则是利用高温(3001000)分解树脂,并分离出增强纤维和填料。此方法可以生产出可再次使用的纤维和无机填料,并可将热裂解、气化和氧化过程中产生的热量作为二次能源使用,但热回收过程也使得纤维和颗粒的性能不同程度的降低。化学回收旨在通过化学解聚分离出纤维并进一步利用溶剂溶解树脂得到可使用的纤维。由于化学回收缺乏灵活性、生产中产生化学废料,导致其当前并没有得到积极的研究。然而,超(近)临界
8、液体工艺-一种清洁生产工艺,最近却得到广泛的关注并表现出巨大的发展潜力46。市场需求的匮乏、回收成本的高昂以及产品性能与原生材料相比较低是复合材料回收商业化的最大阻碍,同样制约了再生复合材料产品在汽车、航空航天、其它工程和消费领域的应用。环保政策虽然对材料的回收技术开发起到推动作用,但仍需要长期的技术研发过程。目前,复合材料回收技术急需在以下三个方面实现突破性的创新:(1) 研发易于回收的新型复合材料;(2) 研发效率更高的分离纯化技术;(3) 研发可以使用再生纤维的复合材料生产技术,至少可以部分替代原生纤维。进一步的创新性研究希望能够在分离和回收技术方面得到突破并最终实现复合材料的回收,开发
9、出更多可回收的复合材料。不久的将来不难想象会出现全复合材料汽车,甚至会实现全部用再生材料生产的汽车。二、 复合材料回收工艺概述受到工艺和经济可行性、环境污染三方面因素的制约,目前仅有极少数的复合材料回收工业化的案值。伴随着不断增长的市场未来需求和更加严格的环保法规的陆续出台,在过去十多年里有许多复合材料回收技术相继研发成功。Henshaw7,8等对复合材料回收技术进行了全面的介绍,Pimenta9等对建筑用碳纤维增强树脂基复合材料的回收技术和市场进行了展望。最近Goodship10也发表了一篇论文,对复合材料的回收技术进行了更为全面的分析。 复合材料手册已经收录了关于复合材料回收技术方面的文章
10、11。Pickering12和Job13的文章针对热固性复合材料的回收技术的发展进行了概述性的分析。由于树脂基复合材料占有绝大多数的市场份额,此类复合材料的回收得到了更多的关注,其中大量的研究是关于热固性树脂与增强纤维的分离技术。同时,人们也在开发热塑性树脂基和金属基复合材料的回收技术14。表1列举了各种复合材料早期的回收技术。表1 复合材料回收技术概述复合材料类别回收技术技术特点技术现状热塑性树脂基复合材料重融重塑法纤维与基体不需要分离还需要在生产过程废料的回收上开展大量的研究再次研磨后磨压或注射成型是否已经商业化生产还不确定再生材料产品成圆球或薄片回收过程纤维受损,再生纤维性能降低化学回收
11、需要使基体溶解此类研究不多回收过程纤维受损,再生纤维性能降低热处理通过燃烧或焚化回收热量此类研究不多或者报导太少热固性树脂基复合材料机械回收粉碎研磨精磨有商业化案例产品为再生纤维和填料ERCOM公司(德国)再生纤维性能降低Phenix Fibreglass公司(加拿大)热回收通过燃烧或焚化回收热量有发展前景通过硫化床热处理技术回收纤维通过热分解技术回收纤维和基体发展受困于再生纤维的市场需求化学回收通过化学方式溶解基体研究仅在试验室阶段醇解(超临界有机溶剂)/水解(超临界水)有发展前景可回收得到高性能的纤维,也可能得到树脂溶剂不易回收,可造成污染金属基复合材料重熔铸锭压铸生产废料,可直接重熔铸锭
12、金属基复合材料价格远高于金属合金和增强材料铸造生产废料,直接重熔提纯(氩气中)重点研究金属基复合材料的回收循环利用碎片质量较差,重熔精炼脱气提纯碎片质量非常差,只对材料重熔后分离出增强材料2.1 通用技术作为工业材料回收的一般规律,回收工艺过程中的每个步骤都是环环相扣的,任何一个步骤的失败都将导致整个回收过程的失败,具体步骤见图4 :(1) 将复合材料粉碎成可回收的碎片:作为回收生产使用的原材料,这些碎片可以来自报废产品和生产过程中产生的废料。与金属和其它高分子材料相比,树脂基复合材料在整个工业生产过程和报废产品中占比较少,而其它金属基、陶瓷基复合材料就更少,汽车和飞机的使用寿命又长达10到5
13、0年之久,这就导致复合材料回收短时间内很难产生较好的经济效益。(2)收集和运输:报废产品的收集和运输是整个回收过程的关键的第一步,所以首先要建立一套适当并高效的报废产品和过程废料的收集和运输系统。目前,报废汽车和飞机的收集工作已经在有条不紊的进行,这些报废产品按照体积大小的分类后运到回收工厂。报废汽车可经过简单的拆解后送到粉碎工厂,但由于报废飞机的体积庞大则需要在现场先拆卸并分隔成可以运输的更小的部件。提高小型电子产品和体育休闲产品的收集效率依然是一项目具有挑战性的工作。(3)后处理-回收:此过程是整个回收工艺链的核心步骤,可以根据复合材料种类的不同,使用机械、高温或化学回收方式进行。虽然多数
14、的研究都集中在此阶段,但不幸的是,目前可行的技术手段都难以满足再生材料性能、环保法规和经济效益的要求,仍需要继续努力研发发更高效的分离技术。(4)再生材料的市场需求:与其它制约因素相比,回收材料的市场需求匮乏仍是最大的问题。再生材料与原生材料相比要有较高的性能和价格优势才能迅速打开市场,相关的技术开发都在围绕这个方向在进行。报废产品过程废料收集和运输分离复合材料收集和运输复合材料回收(机械、热、化学)再生产品:纤维、填料、基体、燃料可回收复合材料碎片市场推广图4 复合材料回收过程2.2 热塑性复合材料的回收与热固性复合材料相比,虽然其市场份额小得多,但其具有高韧性,耐化学腐蚀,生产周期短以及易
15、于回收的优势。由于其可以在加热后重新成型,热塑性复合材料可以直接再次熔融并浇铸得到高市场价值的材料8。多数纤维增强热固性复合材料回收技术都要在一开始先将复合材料通过机械手段粉碎成颗粒,但研磨及后续的生产过程对纤维造成的损伤却降低了原有纤维的性能15。然而对于热塑性复合材料回收的相关研究表明,虽然纤维的拉伸强度和模量有所降低并且表面得到了破坏,但其破坏应变和耐水性却得到了提高。热塑性复合材料的回收大都集中在热塑性塑料和聚合物上,所以在下面不再过多阐述。热固性复合材料最大的技术难点在于基体材料的高粘度(比热塑性基体高500到1000倍)须在高压条件下才能渗浸增强纤维,这就需要投入昂贵的生产设备,加
16、热和冷却设备还需要消耗大量的能源。在很多应用领域,与材料本身的性能优势相比,热固性复合材料在回收循环利用方面的劣势更为突出,成为了其在未来市场开发过程中的一大阻碍。但是新一代热固性复合材料可以被处理成像水一样的低粘度液体,这样就不需要以往那么高的压力、设备和能源投入16。如果可以实现热固性复合材料的浇铸成型,将带来其在商业化应用和市场开拓上面新的一波增长势头,不断增长的市场份额必将使人们更加重视热固性复合材料回收循环利用。Otheguy等17人已经论证了热塑性复合材料船支回收的可行性。这艘用于实验的刚性充气船RIB(一种具有坚硬外壳的橡胶制船)由玻纤维增强聚丙烯树脂夹层复合构成,夹层材料采用刷
17、有涂料的巴尔杉木。通过热熔法可以回收得到用于注射模塑生产的颗粒,生产出来的产品各项指标均较满意。即使涂料和巴尔杉木的存在对成型产品的强度、断裂延伸率和冲击强度有一定的不利影响,但在巴尔杉木含量较低的情况下却对产品模量和冲击强度有一定的提高。总之,这种复合颗粒具有的新特性会带给聚丙烯基注射模塑领域可观的经济效益。它们可以应用于新一代的汽车生产上,最近滑石粉和玻纤增强聚丙烯就已经得到了应用;或者可以在板材和仿木制材料生产中得到应用,而且目前正在考虑木塑复合材料的开发。2.3 热固性复合材料的回收人们对以上提到的三种热固性复合材料的回收技术都已经进行了大量的研究,在未来的工业化生产中都具有某种程度的
18、商业化可行性。2.3.1 机械回收机械回收先将待回收物通过低速切割或碾碎成50-100mm的碎片,再用锤磨机或其它高速精研机加工成10mm-50m大小的颗粒,随后再用旋风分离器将这些颗粒筛分成富纤维部分(粗糙颗粒)和富树脂部分(细腻颗粒)12。近期有一项研究18,19正在针对再生玻璃纤维替代原生玻璃纤维进行复合材料生产,其研究重点方向是开发用于汽车部件(团状和片状模塑产品)回收的全封闭机械回收设备。一种可以进行机械回收并分离出纤维级产品的小型空气分离技术已经开发出来,再生玻璃纤维性能可以与原生新玻璃纤维媲美。但通过比较纤维强度和纤维复合材料的拉拔强度研究纤维和树脂基体间的界面结合强度,再生玻璃
19、纤维与树脂的界面结合强度较差。目前,再生玻璃纤维在不改变原有复合材料生产工艺的情况下生产的复合材料性能可以受到最小程度的影响,但随着再生玻璃纤维填充量的增多,复合材料的弯曲强度和冲动强度明显降低。绝大多数机械回收采用简单的碾碎和精磨手段,不但消耗大量的能源,而且再生产品的性能较差,只能作为复合材料的增强填料使用。德国的ERCOM公司和加拿大的Phoenix Fibreglass公司已经实现了复合材料机械回收的工业化生产12,在4.2.1中我会进行详细的介绍。2.3.2 热回收热回收会涉及到高温处理过程,通常包括以下三个过程:(1) 复合材料的焚化和燃烧,此时只对热量进行回收;(2) 利用回收的
20、热量对复合材料进行氧化分解,得到纤维和填料;(3) 热分解:回收得到纤维和燃料。因为燃烧和焚化过程只对热量进行回收,并没有涉及到材料回收,即便此时产生的无机残留物可以用于水泥生产,此过程仍不能成为一项单独的回收技术,不过市政固体焚烧炉仍然可以作为单独的“回收”热量的设备。“回收”与“回收循环利用”技术在一些欧盟关于回收循环利用技术的相关文件中进行了区分。因此,热回收技术只有以下两种:燃烧硫化技术和热分解硫化技术,其中后者更有发展前途。2.3.2.1 燃烧硫化技术 诺丁汉大学的采用燃烧硫化技术,利用树脂燃烧产生的热量回收玻璃纤维和碳纤维。汉堡大学则采用热分解硫化技术在回收增强纤维的同时对树脂降解
21、产生的二次燃料进行回收,此项技术以后再做单独介绍。用于回收玻璃纤维和碳纤维而开发的硫化技术,可以将复合材料中的有机树脂用作燃料,并利用废热回收系统对燃烧产生的热量进行回收使用,图5描述了硫化技术的工艺流程。首先将25mm大小的复合材料碎片喂入硫化炉沙床,并通入热气,聚乙烯树脂硫化需要在450下进行,环氧树脂则需要高达550的反应温度。此方法可以回收得到表面完好的纤维,平均直径在6-10mm。450下回收得到的玻璃纤维拉伸强度降低了50%,而经过550高温回收得到的碳纤维的风度仅降低了20%。Pickering在他的文章中对再生玻璃纤维和碳纤维的物理形态、纤维长度、机械性能等作了详细的描述。不同
22、于原生纤维的连续化形态,通过硫化技术回收得到的玻璃纤维和碳纤维是一种蓬松的短纤维形态,其长度最高可到10mm,纤维模量并没有降低且表面状态同原生纤维类似,但拉伸强度却仅为原来的75%左右。较低的机械性能限制了它们在模塑复合材料中的应用。同时,Pickering表示,硫化回收技术只有达到年回收复合材料10000吨的情况才能实现真正实现商业化生产,鉴于碳纤维的高价值,只有碳纤维回收可以实现小规模生产。虽然再生材料具有一定的市场价值,但其较低的性能和市场价格依然是影响其商业化进程最大的阻碍。图5 硫化技术对纤维和热量的回收过程122.3.2.2热分解回收技术为了提高再生纤维的长度和模量,热分解技术必
23、须在高温下使树脂降解或者在300800的无氧环境下使树脂解聚。虽然可以在高达1000的温度下进行处理,但得到的纤维性能会受到更大程度的破坏。此项技术可同时应用于高分子材料和树脂基复合材料的回收。热分解技术可以同时对增强纤维和树脂基体进行回收处理,其中回收树脂可以得到像油、煤气和硬质焦等小分子产品。热分解反应温度和反应时间是影响整个解聚过程和纤维完整度最大的因素,Pickering12、Kamingsky21和Blazo23对此进行过详细的表述。燃烧回收过程使树脂氧化产生二氧化碳和水蒸汽,同时产生热量;与此不同,热分解回收过程会破坏树脂的分子链结构,从而生成具有更小分子量的有机化合物,例如油、煤
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复合材料 回收 技术 进展 论文

链接地址:https://www.31ppt.com/p-3941009.html