基于遗传算法求解作业车间调度问题本科毕业设计论文.doc
《基于遗传算法求解作业车间调度问题本科毕业设计论文.doc》由会员分享,可在线阅读,更多相关《基于遗传算法求解作业车间调度问题本科毕业设计论文.doc(42页珍藏版)》请在三一办公上搜索。
1、基于遗传算法求解作业车间调度问题摘 要作业车间调度问题(JSP)简单来说就是设备资源优化配置问题。作业车间调度问题是计算机集成制造系统(CIMS)工程中的一个重要组成部分,它对企业的生产管理和控制系统有着重要的影响。在当今的竞争环境下,如何利用计算机技术实现生产调度计划优化,快速调整资源配置,统筹安排生产进度,提高设备利用率已成为许多加工企业面临的重大课题。近年来遗传算法得到了很大的发展,应用遗传算法来解决车间调度问题早有研究。本文在已有算法基础上详细讨论了染色体编码方法并对其进行了改进。在研究了作业车间调度问题数学模型和优化算法的基础上,将一种改进的自适应遗传算法应用在作业车间调度中。该算法
2、是将sigmoid函数的变形函数应用到自适应遗传算法中,并将作业车间调度问题中的完工时间大小作为算法的评价指标,实现了交叉率和变异率随着完工时间的非线性自适应调整,较好地克服了标准遗传算法在解决作业车间调度问题时的“早熟”和稳定性差的缺点,以及传统的线性自适应遗传算法收敛速度慢的缺点。以改进的自适应遗传算法和混合遗传算法为调度算法,设计并实现了作业车间调度系统,详细介绍了各个模块的功能与操作。最后根据改进的编码进行遗传算法的设计,本文提出了一种求解车间作业调度问题的改进的遗传算法,并给出仿真算例表明了该算法的有效性。关键词:作业车间调度;遗传算法;改进染色体编码;生产周期Solving jop
3、shop scheduling problem based on genetic algorithmAbstractSimply speaking, the job shop scheduling problem(JSP) is the equipment resources optimization question. Job Shop Scheduling Problem as an important part of Computer IntegratedManufacturing System (CIMS) engineering is indispensable, and has v
4、ital effect onproduction management and control system. In the competion ecvironment nowadays, how touse the assignments quickly and to plan production with due consideration for all concernedhas become a great subject for many manufactory.In recent years,the genetic algorithms obtained great develo
5、pment it was used to solve the job shop scheduling problem early.This paper discusses the chromosome code method in detail based on the genetic algorithms and make the improvement on it. Through the research on mathematics model of JSP and optimized algorithm, theimproved adaptive genetic algorithm
6、(IAGA) obtained by applying the improved sigmoidfunction to adaptive genetic algorithm is proposed. And in IAGA for JSP, the fitness ofalgorithm is represented by completion time of jobs. Therefore, this algorithm making thecrossover and mutation probability adjusted adaptively and nonlinearly with
7、the completiontime, can avoid such disadvantages as premature convergence, low convergence speed andlow stability. Experimental results demonstrate that the proposed genetic algorithm does notget stuck at a local optimum easily, and it is fast in convergence, simple to be implemented. the job shop s
8、cheduling system based on IAGA and GASH is designed andrealized, and the functions and operations of the system modules are introduced detailedly. In the end ,according to the code with improved carries on the genetic algorithms desing, this paper offer one improved genetic algorithms about soloving
9、 to the job shop scheduling problem, and the simulated example has indicated that this algorithm is valid.Keywords: jop shop scheduling; genetic algorithm; improvement chromosome code; production cycl毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人
10、或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈
11、交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签
12、名:日期: 年 月 日导师签名: 日期: 年 月 日目 录摘 要IAbstractII1 绪论11.1 课题来源11.2 作业车间调度问题表述11.3 车间作业调度问题研究的假设条件及数学模型21.3.1 车间作业调度问题研究的假设条件21.3.2 车间作业调度问题的数学模型31.4 课题研究内容及结构安排42 遗传算法相关理论与实现技术62.1 自然进化与遗传算法62.2 基本遗传算法72.2.1 遗传算法的基本思路72.2.2 遗传算法的模式定理72.2.3 遗传算法的收敛性分析92.2.4 基本遗传算法参数说明102.3 遗传算法的优缺点112.3.1 遗传算法的优点112.3.2 遗传
13、算法的缺点112.4 遗传算法的进展122.5 小结153 用遗传算法对具体问题的解决与探讨163.1 研究过程中的几个关键问题163.1.1 设备死锁现象163.1.2 参数编码163.1.3 初始种群的生成193.1.4 个体的适应度函数203.1.5 算法参数203.1.6 遗传算子的设计213.2 遗传算法终止条件243.3 遗传算法解决车间调度问题的改进243.4 系统仿真243.5 小结29结 论30致 谢31参考文献32附 录331 绪论1.1 课题来源随着加入WTO,市场竞争越来越激烈,对制造企业来说,为了能够在竞争中立于不败,降低成本是不得不面临的问题,而确保生产车间较高的生
14、产能力和效率,是当务之急。此外,有效的调度方法已经成为先进制造技术实践的基础和关键,所以对它的研究具有重要的理论和实用价值。当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中一个典型例子,也是近代科学技术发展的一个显著特点。遗传算法的蓬勃发展正体现了科学发展的这一特点和趋势。所谓生产调度,即对生产过程进行作业计划,作为一个关键模块,是整个先进生产制造系统实现管理技术、运筹方法、优化技术、自动化与计算机技术发展的核心,有效的调度方法和优化技术的研究与应用,是实现先进制造和提高生产效益的基础和关键。虽然对其研究已有几十年的历史但至今尚未形成一
15、套系统的方法和理论,理论研究与实际应用之间还存在着较大距离。目前的调度算法大多只关心工件的调度问题,而对其它资源分配问题则研究相对不多,将二者结合起来研究应该是值得注意的问题,目前已有不少学者开始关注该问题。由于一般车间调度问题的复杂性,各种不同的具体问题往往有许多不同的算法来解决,例如经典的启发式算法,传统的搜索方法等。由于遗传算法是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法1。它特别适合于处理传统搜索算法解决不好的复杂和非线性问题。一些学者们经过大量的实践证明了遗传算法在解决作业车间调度问题上比经典的启发式算法好,同时遗传算法比传统的搜索技术有更强的优越性,因
16、为它不仅能解决某一特定问题,而且可以适应不同的问题形式2。1.2 作业车间调度问题表述作业车间调度(job-shop)问题可以表述为:设有N个工件在M台机器上加工,根据工件加工工艺的要求,每个工件使用机器的顺序及其每道工序所花时间已给定,调度问题的目标就是如何选择加工顺序使得总的加工时间最短最优。前提假设3:1. 每一台机器每次只能加工一个工件,每一个工件在机器上的加工被成为一道工序。2. 不同工件的加工工序可以不同;3. 所有工件的工序数不大于设备数;4. 每道工序必须在指定的某种设备上加工;5. 任何作业没有抢先加工的优先权;6. 在作业优化过程中既没有新的工件加入也没有取消的工件;调度问
17、题具有相当的难度,目前调度问题的理论研究成果主要在job-shop问题为代表的基于最小完工时间的调度问题上。求解调度问题的方法称为调度优化算法。它可分为精确求解方法和近视求解方法。其中精确求解方法包括解析方法、穷举方法(包括分支定界)等;近似求解方法包括基于规则的构造性方法、邻域搜索算法(如进化遗传算法,模拟退火算法)以及人工智能方法(如神经网络)4等。而传统的运筹学方法,即便在较大规模的基于单目标优化的静态调度问题中也难以有效应用。本文从实际和理论两方面进行研究和深入,重点研究了现代进化算法中有代表性发展优势的遗传算法。车间作业是指利用车间资源(如机床、刀具、夹具等)完成的某项任务。在实际生
18、产中,这项任务可能是装配一种产品,也可能是完成一批工件的加工。而在本文中,为了研究方便,我们将这项任务限定为加工一批工件。在此基础上,可对车间作业调度问题进行一般性的描述:假定有多个工件,要经过多台机器加工。一个工件在一台机器上的加工程序称为一道“工序”,相应的加工时间称为该工序的“加工时间”。用事先给定的“加工路线”表示工件加工时技术上的约束,即工件的加工工艺过程。用“加工顺序”表示各台机器上各个工件加工的先后顺序。车间作业调度问题中,每个工件都有独特的加工路线5。它所要解决的问题就是确定每台机器上不同工件的加工顺序,以及每个工件的所有工序的起始加工时间,以最优化某个性能指标。 1.3 车间
19、作业调度问题研究的假设条件及数学模型1.3.1 车间作业调度问题研究的假设条件在研究一般的车间作业调度问题中往往需要明确两类重要假设条件:1.工艺路径约束:工件的任一工序必须在其前道工序完成后才能开始,并保证同一工件不会同时在两台机器上加工,反映了工件不同工序间的时序关系;2.资源(机器)独占性约束:任一台机器每次只能加工一个工件,且一旦开工就不能中断,反映了加工队列中工件间的时序关系。此外,还有一些辅助假设条件,如下:1. 各工件经过其准备时间后可开始加工;2. 不考虑工件加工的优先权,即工件之间没有优先约束关系限制的;3. 工序允许等待,即前一个工序未完成,则后面工序需要等待;4. 所有机
20、器处理的加工类型均不同;5. 工件的加工时间事先给定,且在整个加工过程中保持不变;6. 缓冲区容量为无穷大。1.3.2 车间作业调度问题的数学模型建立车间作业调度问题的数学模型,是我们研究该问题的出发点,同时也为其后的研究奠定了基础。假设有n个工件,要在m台机器上加工,每个工件有Pi道工序,每台机器上总共要加工Lj道工序。我们定义以下基本数学符号6:J:所有工件的集合,; M:所有机器的集合,;:工件Ji的工序集合,;P:所有工序的集合,此为矩阵。P(i,j)表示i工件的第j道工序。,表示i工件的所有工序按优先顺序的排列。不足,那么其空余的位置用0填满。 (1.1):机器顺序阵,此为矩阵。(i
21、,j)表示i工件的第j道工序的机器号,表示i工件的所有工序按优先顺序加工的各机器号的排列。注意:如果某工件的工序数不足,那么其空余的位置用0填满。 (1.2)T:加工时间阵,此为矩阵。T(i, j)表示工件i的第j道工序在(i,j)上的加工时间。同样地,如果某工件的工序数不足,那么其空余的位置用0填满。 (1.3) :工件排列阵,此为矩阵。表示在i机器上排在第j位加工的工件号,表示i机器上依次加工的各工件的排列。同上,如果某工件的工序数不足,那么其空余的位置用0填满。事实上,工件排列阵就是调度的一种表示形式。由此,我们可以给出一般性的车间作业调度数学模型的定义:如果对应于一个确定的,满足或。即
22、使得目标函数取值最小(或最大),且与相容,则称为车间作业调度问题在此目标函数下的最优解。生产调度问题存在多种优化目标或者综合优化目标,调度问题的优化目标通常从两个方面来考虑:生产成本和生产时间。调度问题从生产成本方面来考虑,其优化目标有:库存最少、在制品最少、设备利用率最高等;从生产时间方面来考虑,其优化目标有:最大程度满足交货期、最小完成时间、最小流动时间和最小等待时间等。两个方向的优化目标之间彼此不是相互孤立的,其中的许多具体目标之间的联系很密切,有的相互促进,有的相互冲突,也有的毫无联系。1.4 课题研究内容及结构安排本文共分为三章。第一章简要介绍了车间调度问题和求解调度问题的基本方法;
23、第二章介绍了遗传算法的基本理论;第三章用遗传算法来解决车间调度问题,其中介绍了常用的几种编码方式,在比较的情况下提出本文主要用基于操作的编码方式.还有提出了几种主要的遗传算子。并且以四个工件四个机器问题进行举例,说明了用遗传算法解决车间调度问题的可行性。2 遗传算法相关理论与实现技术遗传算法(Genetic Algorithm, GA)是一种基于自然群体遗传演化机制的高效探索算法,它是美国学者Holland于1975年首先提出来的7。它摒弃了传统的搜索方式,模拟达尔文的遗传选择和自然淘汰的生物进化过程8。它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,对群体反复
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 遗传 算法 求解 作业 车间 调度 问题 本科 毕业设计 论文
链接地址:https://www.31ppt.com/p-3940855.html