基于卡尔曼滤波的目标跟踪研究.doc
《基于卡尔曼滤波的目标跟踪研究.doc》由会员分享,可在线阅读,更多相关《基于卡尔曼滤波的目标跟踪研究.doc(24页珍藏版)》请在三一办公上搜索。
1、毕 业 设 计设计题目:基于卡尔曼滤波的目标跟踪研究 姓名XXX院系信息与电气工程学院专业电气工程及其自动化年级XXXX级学号XXXXXXXXX指导教师周XX2012年4月 24 日独 创 声 明本人郑重声明:所呈交的毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本论文(设计)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。此声明的法律后果由本人承担。 作者签名: 二一 年 月 日毕业论文(设计)使用授权声明本人完全了解鲁东大学关于收集、保存
2、、使用毕业论文(设计)的规定。本人愿意按照学校要求提交论文(设计)的印刷本和电子版,同意学校保存论文(设计)的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文(设计);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文(设计)的部分或全部内容,允许他人依法合理使用。(保密论文在解密后遵守此规定)论文作者(签名): 二一 年 月 日目 录引言1. 绪论 1.1研究背景 1.1.1卡尔曼滤波提出背景 1.1.2 应用范围1 1.2本文研究的主要内容22初步认识卡尔曼滤波22.1关于卡尔曼2.2滤波及滤波器问题浅谈22.3 卡尔曼滤波起源及发展3.估计原理和卡尔曼滤波24
3、卡尔曼滤波的实现4.1卡尔曼滤波的基本假设54.2卡尔曼滤波的特点54.3卡尔曼滤波基本公式64.4卡尔曼滤波参数的估计和调整5卡尔曼滤波的相关知识5.1 85.2 85.3 96 卡尔曼滤波器的设计7 目标跟踪模型的建立8 结合数学模型进行matlb编程9 目标跟踪仿真10 结论1111.参考文献1112.致谢12131516基于卡尔曼滤波的目标跟踪研究杨倩倩(信息与电气工程学院 电气工程及其自动化 2008级2班 083515586)摘 要:卡尔曼滤波是Kalman 在线性最小方差估计的基础上,提出的在数学结构上比较简单的而且是最优线性递推滤波方法,具有计算量小、存储量低,实时性高的优点。
4、在很多工程应用中都可以找到它的身影,包括航空器轨道修正、机器人系统控制、雷达系统与导弹追踪等。利用卡尔曼滤波预测物体移动的速度、角度,确定物体下一时刻的位置,控制摄像机跟踪物体。同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题,具有重要的工程实践意义。此论文主要是通过介绍卡尔曼滤波的原理,结合实际建立卡尔曼滤波数学模型,设计关于目标追踪的卡尔曼滤波器。关键词:卡尔曼滤波;目标跟踪;最优Research on Object Tracking Based on Kalman FilterYang Qianqian(College of Information and Electrica
5、l Engineering, Electrical Engineering and Automation, Class2 Grade2008,083515586)Abstract: Kalman Filter is easy and optimal Linear recursive filtering method In the mathematical structure,which is raised by Kalman based on linear minimum variance estimation.It has the advantages of small amount of
6、calculation ,low storage capacity and high real-time.It can be found in many engineering application , including aircraft rail correction, robot control system, radar and missile tracking system, etc.Using Kalman filter to predict the object moving speed,angle,identification of objects in the next t
7、ime location,controlling the camera tracking object.At the same time,Kalman filter is an important topic of control theory and control engineering with important practical significance for engineering.This paper mainly introduces the principle of Kalman filter,combined with reality to establish Kalm
8、an filter mathematical model to design object tracking about the kalman filter.Key Words: Kalman Filter ; Object Tracking ; Optimal;引言本文首先介绍了卡尔曼滤波的基本原理,分析现有的跟踪算法,重点讨论卡尔曼滤波算法,行驶中的汽车所处的道路环境是相当复杂的,而安装车载雷达的汽车本身也是不时的处于机动状态之中,因此车载雷达所探测的目标也是在不停的变化当中,邻近车道上的车辆,车道间的护拦,路旁的树木和各种标识牌以及空中和远处的高大建筑等物体会产生虚警问题。结合路面目标跟
9、踪的实际,卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻的估计值和现时刻的观测值来更新对状态变量的估计,求出现在时刻的估计值。进而建立数学模型并进行matlab编程仿真最后的出结论,具有一定的实践意义。1 绪论 1.1 研究背景1.1.1 卡尔曼滤波提出背景 关于最优估计问题,在20世纪40年代初,维纳提出最优线性滤波,称为维纳滤波。这种滤波是在信号和干扰都表示为有理谱密度的情况下,找出最优滤波器,使得实际输出与希望输出之间的均方误差最小。维纳滤波问题的关键是推导出维纳-霍夫积分方程,解这一积分方程可得最优滤波器的
10、脉冲过渡函数,从脉冲过渡函数可得滤波器的传递函数。通常解维纳-霍夫积分方程是很困难的,即使对少数情况能得到解析解,但在工程上往往难以实现。特别对于非平稳过程,维纳滤波问题变得更为复杂。Wiener 滤波要求信号是平稳随机过程,要求存贮全部历史数据,且滤波器是非递推的,计算量和存贮量大,不便于实时应用,基于以上缺点,改进滤波器设计就有了更进一步的要求。1960年,卡尔曼提出了在数学结构上比较简单的最优线性滤波方法,实质上这是一种数据处理方法。维纳滤波属于整段滤波,即把整个一段时间内所获得的测量数据存储起来,然后同时处理全部数据,估计出系统状态。卡尔曼滤波是递推滤波,由递推方程随时间给出新的状态估
11、计。因此对计算机来说,卡尔曼滤波的计算量和存储量大为减少,从而比较容易满足实时计算的要求。因而卡尔曼滤波在工程实践中迅速得到广泛应用。1.1.2 应用范围卡尔曼滤波器最初是专为飞行器导航而研发的,目前已成功应用在许多领域中。卡尔曼滤波器主要用来预估那些只能被系统本身间接或不精确观测的系统状态。许多工程系统和嵌入式系统都需要卡尔曼滤波。比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度,加速度的测量值往往在任何时候都有噪声。卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可
12、以是对过去位置的估计。卡尔曼滤波器是一个最优化自回归数据处理算法(optimal recursive data processing algorithm),它的广泛应用已经超过 30 年,包括航空器轨道修正、机器人系统控制、雷达系统与导弹追踪等。近年来更被应用于组合导航与动态定位,传感器数据融合、微观经济学等应用研究领域。特别是在图像处理领域如头脸识别、图像分割、图像边缘检测等当前热门研究领域占有重要地位。 基本卡尔曼滤波(KF)器限定在线性的条件下,在大多数的非线性情形下,我们使用扩展的卡尔曼1滤波(EKF)器来对系统状态进行估计。随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如
13、自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。 其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H 波)。卡尔曼滤波作为一种数值估计优化方法,与应用领域的背景结合性很强。 因此在应用卡尔曼滤波解决实际问题时,重要的不仅仅是算法的实现与优化问题,更重要的是利用获取的领域知识对被认识系统进行形式化描述, 建立起精确的数学模型,再从这个模型出发,进行滤波器的设计与实现工作。由于其具有实时递推、存储量小和简单易行的特点,在工程应用中受到了重视,广泛应用于信号处理、控制、通信、航天、制导、目标跟踪、石油勘探、故障诊断、卫星测控
14、、GPS定位、检测与估计、多传感器信息融合、机器人及生物医学等领域。卡尔曼滤波器应用领域: 自动驾驶仪 动态定位系统 经济学, 特别是宏观经济学,时间序列模型,以及计量经济学 惯性引导系统 雷达跟踪器 卫星导航系统 1.2 本文研究的主要内容此论文主要是通过详细介绍卡尔曼滤波的发展背景和应用原理,并介绍各种最优估计原理和不同的滤波器,着重分析卡尔曼滤波的优点和和在工程实践中的优良特性,结合实际建立卡尔曼滤波数学模型,对数学模型进行分析计算,结合数学模型进行matlb编程,分析改进程序并进行仿真应用,设计关于目标追踪的卡尔曼滤波器。2 初步认识卡尔曼滤波2.1 关于卡尔曼鲁道夫卡尔曼(Rudol
15、f Emil Kalman),匈牙利裔美国数学家,1930年出生于匈牙利首都布达佩斯。1953年于麻省理工学院获得电机工程学士,翌年硕士学位。1957年于哥伦比亚大学获得博士学位。1964年至1971年任职斯坦福大学。1971年至1992年任佛罗里达大学数学系统理论中心(Center for Mathematical System Theory)主任。1972起任瑞士苏黎世联邦理工学院数学系统理论中心主任直至退休。现居住于苏黎世和佛罗里达。2009年获美国国家科学奖章。2.2 滤波及滤波器问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的
16、,接近规定质量的信息。由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。最初滤波器是指某种具有选频特性的电子网络,一般由线圈、电容器和电阻器等元件组成。滤波器将使它所容许通过的频率范围(即通带)内的电信号
17、产生较小的衰减,而使它所阻止通过的频率范围(即阻带)内的电信号产生较大衰减。划分通带和阻带的频率,称为滤波器的截止频率。按容器通过的频率范围,滤波器可分为低通,高通,带阻和带通滤波器等。具有选频特性的串联或并联谐振回路,是一种常用的滤波器。收音机或其他差式接收机中的中频放大器,也是一中滤波器。也是一种滤波器。各级中频放大器中回路靠放大器和变压器来耦合,形成一定的通带和阻带。信号在通过中放级时,通带内的成分将被放大,而阻带内的成分将大大衰减,而且对通带内的信号还有放大作用。按组成电路的元件,滤波器可分为LC、RLC、RC、晶体和陶瓷滤波器等。我们也可以用机械元件代替电子元件,制成机械式滤波器,或
18、利用物质的铁磁共振原理制成可点电调谐的滤波器。此外,调幅波接收机中的包络是一种非线性滤波器。非线性滤波器实例还有:自动增益控制电路,调频接收机中的锁相环以及近年来在组合音响装置中用来提高信噪比的Dobly系统等。上面所举的这些滤波器,不论是线性还是非线性的,由于都是用来对模拟信号进行处理,故统称为模拟滤波器或经典滤波器。随着集成电路技术的出现,特别是数字电子计算机的广泛应用,模拟滤波器开始向数字滤波器方向发展。A/D或D/A转换器,移位寄存器。只读存储器以及微处理机这样一些与传统的模拟滤波电路元件截然不同的电路元件和模块被广泛应用于数字滤波电路中,以适应离散数字信号处理的要求。即使是模拟信号,
19、也可通过A/D转换先变成离散的数字信号,经相应的处理后再恢复成模拟信号。与模拟滤波器相比,数字滤波器不仅可使体积缩小,成本降低,而且还有如下优点:第一,滤波器的参数可根据对滤波器性能指标的要求来设定,从而具有较高的精度;第二,滤波器的参数很容易重新设定或使具有自适应性;第三,有些采用微处理机的数字滤波器可实现对微处理机的分时使用,从而大大提高工作效率。经典滤波器的另一发展方向,就是利用统计理论来处理滤波问题,由此,产生了统计滤波器。从经典滤波的观点来看,有用信号和噪声信号是分布在不同频带之内。因此,我们可用具有一定选频特性的经典滤波网络把噪声尽可能地滤除,而保留畸变不大的有用信号。但是,我们所
20、遇到的信号和噪声有时可能是随机的,其特性往往只能从统计的意义上来描述。例如,在导弹控制系统中,由于目标运动的随机性,目标的位置和速度都是随机的。此外,测量装置也会有随机噪声。此时,我们就不可能采用一般的经典滤波器把有用信号从测量结果中分离出来,而只能用统计估算方法给出有用信号的最优估计值。从统计的观点来看,一个滤波器的输出越接近实际有用信号,这个滤波器就越好。也就是说,最优滤波器是输出最接近于实际有用的信号的滤波器。随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古
21、老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。2.3 卡尔曼滤波起源及发展随机信号没有既定的变化规律,对它们的估计也不可能完全准确,所谓最优估计也仅仅是指,在某一准则下的最优。根据不同的最优准则,可获得随机信号的不同最优估计。使贝叶斯风险达到最小的估计为贝叶斯估计;使关于条件概率密度的似然函数达到极大的估计为极大似然估计;使验后概率密度达到极大的估计为极大验后估计;使估计误差的均方误差达到最小的估计为最小方差估计,若估计具有线性形式,则估计为线性最小方差估计,卡尔曼滤波即属此类估计。卡尔曼滤波理论的创立是科学技术和社会需要发展到一定程度的必然结果。早在1795年,高
22、斯(Karl Gauss)为测定行星运动轨道而提出了最小二乘估计法。本世纪40年代,为了解决火力控制系统精确跟踪问题,维纳(N.Weaner)于1942年提出了维纳滤波理论。维纳根据有用信号和干扰信号的功率谱确定出线性滤波器的频率特性,首次将数理统计理论与线性系统理论有机的联系在一起,形成了对随机信号作平滑、估计或预测的最优估计新理论。比维纳稍早,前苏联科学家戈尔莫克罗夫(A.N.Kolmogorov)于1941年也曾提出过类似的理论。维纳给出了由功率谱求解维纳滤波器频率特性闭合解的一般方法,包括对功率谱的上、下平面分解及傅里叶变换和反变换,运算繁杂,解析求解十分困难。1950年,伯特和香农给
23、出了功率谱为有理谱这一特殊条件下,由功率谱直接求取维纳滤波器传递函数的设计方法,这一方法简单易行,具有一定的工程实用价值。维纳滤波的最大缺点是适用范围极其有限,它要求被处理信号必须是平稳的,且是一维的。人们试图将维纳滤波推广到非平稳和多维的情况,都因无法突破计算上的困难而难以推广和应用。采用频域设计法是造成维纳滤波器设计困难的根本原因。因此人们逐渐转向寻求在时域内直接设计最优滤波器的新方法,其中卡尔曼的研究最具有代表性,他提出的递推最优估计理论也因此而被称为卡尔曼滤波。由于采用了状态空间法描述系统,算法采用递推形式,所以卡尔曼滤波能处理多维和非平稳的随机过程。卡尔曼滤波理论一经提出,立即受到了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 卡尔 滤波 目标 跟踪 研究
链接地址:https://www.31ppt.com/p-3940437.html