基于RBF神经网络电力负荷预测毕业论文.doc
《基于RBF神经网络电力负荷预测毕业论文.doc》由会员分享,可在线阅读,更多相关《基于RBF神经网络电力负荷预测毕业论文.doc(53页珍藏版)》请在三一办公上搜索。
1、 四川理工学院毕业论文基于RBF神经网络的短期负荷预测研究学 生:周路尧 学 号:09021040324 专 业:电气工程及其自动化 班 级:2009.3 指导教师:曾晓辉 四川理工学院自动化与电子信息学院二一三年六月基于RBF神经网络的短期负荷预测研究 摘要:随着电力市场的不断发展,对电力负荷科学管理的迫切要求以及对准确和适应性强的负荷预测模型的渴望,使得负荷预测的重视程度越来越高。本文采用了基于RBF(Radial Basis Function)神经网络的电力系统短期负荷预测方法,简单讨论了影响负荷的各种因素,并根据电力负荷的特点主要针对负荷值设定7个输入节点, 1个输出节点以及48点负荷
2、值,将1999年1月3日至9日负荷数据作归一处理并作为训练数据预测10日负荷值。该方法训练速度快,收敛性好,而且可以大大地减少隐含层神经元的数目,有效地提高了预测精度和预测速度。最后根据预测结果和实际负荷进行比较,表明其误差在允许范围之内,预测精度是符合要求的,从而说明了该方法的正确性和实用性。 关键词:电力系统;负荷预测;RBF神经网络;预测模型The Research of Short-Term Load Forecasting Based on RBF Neural NetworksZHOU Luyao(Sichuan University of Science and Engineer
3、ing,Zigong, China, 643000) Abstract:This paper uses a brief discussion of the various factors affecting the load based on RBF (Radial Basis Function) neural network short-term load forecasting method,and according to the characteristics of the main power load for the load setting seven input nodes,
4、one output nodes, and 48 point load value, the year 1999 January 3 to 9 for the normalized load data processed and used as training data to predict the 10th load value.This method training speed, good convergence, and can greatly reduce the number of hidden neurons, effectively improve the predictio
5、n precision and predict speed. Based on the result and the actual load, compared the error that the scope of the permit, the forecasting accuracy is to satisfy the requirements, which shows that the method is correct and practical. Key words:Electric power system; Load forecasting; RBF neural networ
6、k; Prediction model目 录摘要IAbstractII第1章 前 言11.1负荷预测研究的背景和意义11.2负荷预测的研究现状21.3本论文研究的主要工作51.4本章小结5第2章 电力负荷预测概述62.1 负荷预测的概念和原理62.2负荷预测的分类72.3负荷预测的基本步骤92.3.1负荷预测的基本要求92.3.2负荷预测的基本步骤102.4电力负荷的特性分析122.4.1 负荷的周期性122.4.2 负荷的随机性132.4.3 负荷的影响因素分析132.5 影响负荷预测的因素及误差分析152.5.1 影响负荷预测的主要因素152.5.2 负荷预测的误差分析152.6本章小结1
7、7第3章 人工神经网络183.1 人工神经网络183.1.1 人工神经网络简介183.1.2人工神经网络的模型183.2 RBF神经网络20 3.2.1 RBF神经网络的结构213.2.2 RBF神经网络的具体实现223.2.3 RBF神经网络的学习算法233.3 RBF神经网络与BP网络的比较263.3.1 BP网络存在的问题263.3.2 RBF网络与BP网络之间的差别263.4本章小结27第4章 基于RBF神经网络的短期负荷预测实例分析284.1 RBF神经网络的建立284.2 RBF神经网络的训练294.2.1 样本的选取294.2.2 数据预处理304.2.3 神经网络输入数据的归一
8、化处理314.3 短期负荷预测结果与分析32 4.4本章小结39第5章 结束语39致 谢41参考文献42附 录43第1章 前 言1.1负荷预测研究的背景和意义负荷可指电力需求量或用电量,而需求量是指能量的时间变化率,即发电厂、供电地区或电网在某一瞬间所承担的工作负荷;而对用户来说,用电负荷是指连接在电网的用户所有用电设备在某一瞬间所消耗的功率之和。电力系统的任务是给广大用户不间断的提供优质电能,满足各类负荷的需求。电力系统负荷预测是根据电力负荷、经济、社会、气象等的历史数据,探索电力负荷历史数据变化规律对未来负荷的影响,寻求电力负荷与各种相关因素之间的内在联系,从而对未来的电力负荷进行科学的预
9、测。电力系统在逐步发展、完善过程中,负荷预测己成为能量管理系统(EMS)中一项独立的内容;在当前电力系统市场化的必然趋势下,负荷预测已成为电力市场交易管理系统中必不可少的一部分。在实际应用中,电力系统不同组成部分对负荷预测的范围和精度有所不同。因此研究负荷预测的范畴和影响因素及负荷特性对提高预测精度及负荷预测的发展有重要的意义。电力系统负荷预测它的重要意义可以归纳为以下几个方面:1、短期负荷预测是电力系统优化调度的基础。准确的短期负荷预测是电网调度机构制定发供电计划、合理安排机组启停和做好电网供需平衡的关键。有助于运行人员估计电能的生产、输送、分配和消费各个环节的情况,制定出合理的运行方案,确
10、保电网和机组的安全、稳定、经济运行。2、在电力市场条件下,短期负荷预测不再是纯技术性的问题,它应当是一个技术性与经济性相结合的问题。同时也不再仅仅是能量管理系统的一部分,它是电力市场制定各种计划的重要依据。3、精确的负荷预测,可以使电力企业经济地安排机组生产;利用精确的负荷预测对水电系统可以确定最优的水库放水和机组投产计划;对火电系统而言,可以确定机组按最经济地组合起停生产;对水火电结合的系统,可确定系统按最经济的状态进行水电火电分配;对联网的系统,精确的负荷预测不但决定系统按最经济的线路进行电能传输。4、为用户提供安全、可靠、经济、优质的电能是电网运营企业的首要目标,准确的负荷预测可以使电网
11、运营企业可以在电力市场中以较便宜的电价购电。1.2负荷预测的研究现状随着世界电力市场的不断发展,负荷预测在各国越来越受到了人们的重视。80年代,由于能源紧张造成的对负荷科学管理的迫切要求以及对准确和适应性强的负荷预测模型的渴望,使得负荷预测的重视程度越来越高。90年代,随着世界各国电力市场的发展,负荷预测受到人们更广泛的关注。在我国,随着国民经济的高速发展和人民生活水平的不断提高,电力已成为国民经济建设和人民生活中必不可少的重要能源,电网管理的日趋现代化,使得负荷预测越发引起人们的重视。短期负荷预测技术的发展是从离线分析到在线应用逐步发展的过程,也是从过分依赖于调度员的运行经验到自动化、智能化
12、逐步转变的过程。二十世纪七十年代后,许多数学统计方法被引入到短期负荷预测中,使短期负荷预测摆脱了完全依赖调度员经验的历史,将短期负荷预测技术提高到一个新的水平,二十世纪九十年代初期开始,人工智能技术逐步被用到短期负荷预测中,人工智能技术主要用来解决非线性问题和不确定性问题。和数学统计相比,人工智能预测方法在预测过程中考虑了各种不确定因素,在实际的负荷预测过程中确实能提高预测精度。组合预测方法是建立在最大信息利用的基础上,它集合多种单一模型所包含的信息,进行最优组合。因此,在大多数情况下,通过组合预测可以达到改善预测结果的目的。短期负荷预测技术发展至今己有几十年,随着数学统计理论和人工智能技术的
13、相继发展,人们提出各种各样的预测方法。迄今为止,短期负荷预测方法大致可以分为两类:即传统预测方法和人工智能方法。传统预测方法的原理比较简单,理论比较成熟,因此至今仍有应用。但是这些方法采用的数学模型过于简单,其参数难以及时、准确地进行估计和调整,而且不能反映负荷的突然变化,因此它们不能适应用较精确的数学模型来描述负荷的变化规律及其它因素对负荷的影响,从而使这些方法难以获得较高预测精度。下面对几种典型的方法加以介绍并进行简单的分析与评价。1、传统预测方法:(1) 回归分析法。回归分析法是一种曲线拟合法,即对过去的具有随机特性的负荷记录进行拟合,得到一条确定的曲线,然后将此曲线外延到适当时刻,就得
14、到了该时刻的负荷预测值。这种方法是研究变量和变量之间依存关系的一种数学方法。(2) 时间序列法。用时间来代替影响负荷的因素,依据负荷过去的统计数据,找到其随时间变化的规律,建立时序模型,以推断未来负荷数值。其基本假设是:负荷过去的变化规律会持续到将来,即未来是过去的延续。其主要数学模型有自回归(削R)模型、滑动平均(MA)模型和自回归-滑动平均(ARMA)模型等。但时序法无论采用哪种模型都没有考虑不同时刻负荷之间的相关性和其它因素对负荷的影响,预测精度较差,因此时序法存在着预测不准确的问题。(3) 小波分析方法。小波分析是一种时域-频域分析,在时域、频域同时具有良好的局部化性质。小波分析汲取了
15、现代分析学中诸如泛函分析、调和分析、样条分析等众多数学分支的精华。小波变换能将交织在一起的不同频率组成的混合信号分解成不同频带上的块信号,对负荷序列进行小波变换,可以将负荷序列投影到不同的尺度上,而各个尺度可近似地看作各个不同的“频带”,这样各个尺度上的子序列分别代表了原序列中不同“频域”的分量,它们可以清楚的表现出负荷序列的周期性。在此基础上,分别对各个尺度上变换得到的子序列进行预测,最后利用各个尺度上的预测结果进行信号重构,就得到了完整的预测结果。(4) 灰色预测法。灰色预测理论其显著特征就是用少量的数据做微分方程建立起预测的模型。在将一定范围内变化的历史数据列进行累加,使其变成具有指数增
16、长规律的上升形状数列,可以对生成的这个形状数列建立起GM(GREY MODEL)模型。GM(1,n)也就是对n个变量用一阶微分方程建立的灰色模型。GM(1,1)模型是灰色理论中最广泛地用于电力负荷预测的一种有效模型,它属于动态建模,采用微分拟合方程的方法来描述事物的发展变化规律。灰色预测具有要求负荷数据少、不考虑分布规律、不考虑变化趋势、运算方便、短期预测精度高、易于检验等优点,因此得到了广泛应有,并取得了令人满意的效果。但是,它和其他预测方法对比,也存在一定的局限性。一是当数据离散程度越大,即数据灰度越大,则预测精度越差;二是不太适合于电力系统的长期后推若干年的负荷预测。2、人工智能方法:(
17、1) 人工神经网络法。负荷预测是人工神经网络在电力系统中的主要应用部分。由于其具有高度非线性范函逼近和并行处理能力,它不依赖于人工的经验,通过学习获得系统输入和输出间的函数连接关系。神经网络不是首先确定一个函数的形式,而是通过训练历史数据得出天气变量和预测负荷之间的关系。它具有信息记忆、自主学习、知识推理和优化计算的特点,其自学习和自适应功能是常规算法和专家系统所不具备的。人工神经网络用于短期负荷预测的具体过程为:以历史负荷、天气数据(如气温)等作为输入变量,以负荷预测值为输出变量,通过大量的样本训练神经网络,确定神经元之间的连接权值及神经元的值,然后将训练完成的网络用于预测未来的负荷,并且随
18、着新样本的加入,可以重新训练神经网络,形成新的权值和阈值以适应新的样本1。现在有多种人工神经网络模型被用于短期负荷预测,主要有BP(Back Propagation)网络2、RBF(Radial Basis Funetion)网络3、Hopfield网络3、Kohonen自组织特征映射3等。(2) 专家系统方法。专家系统是人工智能领域的一个重要分支,它是一种基于知识推理的系统,它通过获取大量的领域内专家知识并在此基础上进行推理从而得到问题的解答。专家系统适用于专业范围明确,没有完整的、精确的理论的领域,专家系统是对人类的不可量化的经验进行转化的一种较好的方法,若能将它与其他方法有机地结合起来构
19、成预测系统,将可得到满意的结果。(3) 模糊控制法。模糊集合和模糊推理是专门用来处理不确定性问题的理论。模糊集合将经典集合的绝对隶属关系(非A即B)模糊化(既A又B),典型的隶属度函数有三角函数、梯形函数、正态分布函数、S形分布函数和Z形分布函数。模糊推理基于模糊规则,模糊规则以IF-THEN的形式来表达模糊集合间的关系。电力负荷预测是利用以往的数据资料找出负荷的变化规律,从而预测出电力负荷在未来时期的变化趋势及状态。实际预测时,常常需要在历史负荷及影响其变化的相关环境因素数据不确定的情况下进行预测,模糊数学为处理此类问题提供了有效手段。模糊理论是将操作人员的经验以规则的形式表达出来,并转换成
20、可以在计算机上运行的算法。它在电力系统的许多领域中得到了应用。近年来出现了模糊回归分析法、模糊聚类识别预测法、模糊与神经网络结合应用等方法。由于模糊推理可以利用有限的规则近似任意的函数关系,将这一理论应用于负荷预测是不错的选择。最新资料显示,模糊系统和其他方法结合的负荷预测的精度要明显优于其他负荷预测方法。(4)专家系统方法、人工神经网络方法和模糊推理方法共同的优点是能够充分考虑影响负荷的各种因素(如天气因素、季节因素、节假日因素等),将短期负荷预测技术提高到了一个新的水平,专家系统方法和模糊推理方法在确认事实和建立规则时需要大量的实践经验,所以人为因素多一些;在人工神经网络方法中尽管网络结构
21、的选择还依靠一定的人工经验,但神经元之间的关系(权值和阈值)是通过学习样本得到的,所以人为因素要少一些。专家系统方法和模糊推理方法不需要学习过程,其速度较快且不需要样本;而人工神经网络方法在应用之前必须经过学习过程,其速度要慢一些且需要典型的样本集。不同的预测方法有各自的优点和缺点,为了发挥不同方法的优点,避开其不足,人们在负荷预测过程中将不同的预测方法加以组合,形成了许多种组合方法,在一定条件下能够有效的改善模型的拟合能力和提高预测的精度。1.3本论文研究的主要工作本论文通过开展基于RBF神经网络的地区电网短期负荷预测方法探索研究,旨在寻求优化负荷预测方法的实用途径,科学、准确地找出传统负荷
22、预测方法中存在的问题,有针对性的采取有效措施,进一步提高负荷预测的精度和效率,从而实现对电网运行优化的指导工作。其主要工作是根据电网的历史负荷数据,分析影响预测的各种因素,然后建立相应的神经网络预测模型,具体研究内容包括:1、熟悉地区电网短期负荷预测计算流程,收集地区电网历史负荷数局及其他预测影响数据。2、掌握RBF神经网络理论知识,构建基于RBF神经网络的短期负荷预测数学模型。3、掌握相关MATLAB程序仿真应用技巧,编写RBF神经网络MATLAB仿真应用程序。4、根据实际数据进行特定电网短期负荷预测应用设计,最终汇总出相关实用短期负荷预测实施方案。1.4本章小结本章主要描述了关于负荷预测的
23、背景以及研究现状,其中包括一些经典的研究方法,例如专家系统法、模糊控制法等。其次介绍了本论文的研究工作以及研究目标。通过本章可以大致了解到研究意义以及研究的主要思路。第2章 电力负荷预测概述2.1 负荷预测的概念和原理负荷预测是指在充分考虑一些重要的系统运行特性、增容决策、自然条件与社会影响的条件下,研究或利用一套能系统地处理过去与未来负荷的数学方法,在满足一定精度要求的意义下,确定未来某特定时刻的负荷数值。负荷预测工作是根据电力负荷的发展变化规律,预计或判断其未来发展趋势和状况的活动,因此必须科学地总结出预测工作的基本原理,以指导负荷预测工作4。1、可知性原理。就是说待预测对象的发展规律,其
24、未来的发展趋势和状况是可以为人们所知道的。客观世界是可以被认识的,人们不但可以认识它的过去和现在,而且可以通过总结它的过去和现在推测出未来。这是进行负荷预测活动的基本依据。2、可能性原理。事物的发展变化是在内因和外因的共同作用下进行的。内因的变化及外因作用力大小不同,会使事物发展变化有多种可能性。所以,对某一具体指标的预测,往往是按照其发展变化的多种可能性,进行多方案预测的。3、连续性原理。连续性原理又称惯性原理,是指预测对象的发展是一个连续统一的过程,其未来发展是这个过程的继续。它强调了预测对象总是从过去发展到现在,再从现在发展到未来。它认为事物发展变化过程中会将某些原有的特征保持下来,延续
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 RBF 神经网络 电力 负荷 预测 毕业论文
链接地址:https://www.31ppt.com/p-3939230.html