基于PCA的人脸识别算法实现毕业论文.doc
《基于PCA的人脸识别算法实现毕业论文.doc》由会员分享,可在线阅读,更多相关《基于PCA的人脸识别算法实现毕业论文.doc(77页珍藏版)》请在三一办公上搜索。
1、 毕业设计(论文)设计(论文)题目:基于PCA的人脸识别算法实现毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文
2、)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关
3、保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日摘 要随着科技的发展,人类社会的进步,传统身份识别由于容易遗失,容易被破解已不能起到身份识别作用。人们需要更加安全可靠的身份识别技术。而生物特征的独一无二,不易丢失和被复制的特性很好满足了身份识别的需要。同时随着计算机科学技术和生物医学的发展使得利用生物特征识别成为了可能。在生物特征
4、识别领域,由于人脸识别的操作快速简单,结果直观,准确可靠,不需要人的配合等优点已成为人们关注的焦点。主成分分析(PCA)通过提取高维度的人脸图像的主元,使得图像在低维度空间中被处理来降低了图像处理的难度。由于其有效的解决了图像空间维数过高的问题,已经成为人脸识别领域非常重要的理论。本文研究的就是基于PCA的人脸识别算法的实现。本文按照完整人脸识别流程来分析基于PCA的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能选用了Essex人脸数据库。接下来是人脸图像预处理方法。由于Essex人脸图像质量较好,而且已经做过相应的预处理,
5、所以本文试验中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。在实验中我们发现基于PCA的人脸识别系统的识别率很高,而且具有一定鲁棒性,所以基于PCA的人脸识别算法的实现的研究还是有意义。【关键词】人脸识别 PCA算法 奇异值分解定理 欧几里得距离ABSTRACTWith the development of science and technology, the progress of human society, the traditional identification is easy
6、to lose, easy to be cracked and it has not play an identifiable role. People need a more secure and reliable identification technology. Biometric is unique, easy to lose and replication characteristics of good meet the needs of the identification. With the development of computer science and technol
7、ogy and biomedical makes use of biometric identification has become possible. In the field of biometric identification, face recognition with the advantages of operation is fast and simple, the results are intuitive, accurate and reliable,do not need co-ordination, has become the focus of attention.
8、 The principal component analysis (PCA) to extract high dimensional face image of the main element, making the images are processed in low-dimensional space and it reduces the difficulty of image processing. PCA solves effectively the problem of high dimension image space and it has become a very im
9、portant theory in face recognition field. This paper is in this context of writing from. In accordance with the full recognition process to analyze the performance of PCA-based face recognition algorithm. The first to use the method of access to commonly used face images for face images. In order to
10、 better analysis is based on the performance of the PCA face recognition system selected Essex face database. Next is the face image preprocessing methods. Essex face image quality is better, and have done the appropriate pretreatment, using only gray-scale processing of this trial. Then use the PCA
11、 for face feature extraction using singular value decomposition theorem to calculate the covariance matrix of the eigenvalues and eigenvectors, and use the Euclidean distance of the nearest neighbor classifier to the classification of human face discrimination. In the experiment, we found that a hig
12、h recognition rate of the PCA-based face recognition system, but with a certain robustness, the PCA-based face recognition algorithm to achieve meaningful.【Key words】face recognition PCA algorithm SVD Euclidean distance目 录前 言1第一章 人脸识别系统概述2第一节 人脸识别的研究概况2第二节 人脸识别的发展趋势3一、多数据融合与方法综合4二、动态跟踪人脸识别系统4三、基于小波神
13、经网络的人脸识别4四、三维人脸识别4五、适应各种复杂背景的人脸分割技术4六、全自动人脸识别技术4第三节 人脸识别技术的主要难点4一、复杂条件下人脸的检测和关键点定位5二、光照问题5三、资态问题5四、表情问题5五、遮挡问题5第四节 人脸识别流程5一、人脸图像采集6二、预处理6三、特征提取6第五节 本章小结7第二章 人脸图像的获取9第一节 人脸图像获取9第二节 人脸分割9第三节 人脸数据库10第四节 本章小结11第三章 人脸图像的预处理12第一节 人脸图像格式12一、JPEG格式12二、JPEG2000格式12三、BMP格式13四、GIF格式13五、PNG格式13第二节 人脸图像常用预处理方法14
14、一、灰度变化14二、二值化15三、直方图均衡15四、图像滤波15五、图像锐化17六、图像归一化18第三节 本章小结19第四章 人脸识别20第一节 主成分分析基本理论20一、什么是主成分分析?20二、例子20三、基变换21四、方差23五、PCA求解:特征根分解27六、PCA的假设28七、总结:28八、在计算机视觉领域的应用30第二节 基于PCA人脸识别算法的实现31一、创建数据库32二、计算特征脸32三、人脸识别34第三节 本章小结36结 论37致 谢38参考文献39附 录40一、英文原文40二、英文翻译53三、源程序64前 言随着社会和科技的发展,社会步伐的加快,人们对高效可靠的身份识别需求日
15、益强烈。各种技术在科研和实际中都受到了很大的重视和发展。由于生物特征内在的稳定性和唯一性使其成为了作为身份识别的理想依据。人脸特征作为典型的生物特征外,还有隐蔽性好,易于被用户接受,不需要人的配合等优点。现已成为了身份识别领域研究的热点。PCA算法通过降低维度,提取主元素,减少了数据冗余,解决了图像纬度太高无法处理或处理很慢的特点,同时保持了原始图像的绝大部分信息。在人脸识别领域,很多先进的识别算法都是在其基础上的改进。所以研究基于PCA的人脸识别算法实现具有重要的理论和使用价值。本文主要介绍基于PCA的人脸识别算法的实现,除第一章外,其余内容按照人脸识别的流程可分为人脸图像获取,人脸图像预处
16、理,人脸特征提取和特征匹配四个部分。具体安排如下:第一章主要介绍人脸识别的研究现状,人脸识别技术的主要难点及人脸识别流程。第二章主要介绍常用的人脸图像获取方法和人脸图像数据库。第三章主要介绍常用的人脸图像预处理方法。第四章主要介绍PCA算法,SVD定理,如何通过PCA和SVD提取人脸特征及如何使用最近邻法分类器欧几里得距离来进行判别分类。第一章 人脸识别系统概述第一节 人脸识别的研究概况人脸识别的研究起源比较早,Galton 在1888年和1910年就已在Nature杂志发表两篇关于如何使用人脸进行身份识别的论文。在他的文章,他使用一组数字表示相异的人脸侧面特征,同时还对人类本身的人脸识别能进
17、行了研究分析。自动人脸的研究历史相对比较短,到现在不过五十多年的时间。不过1990年以来,才得到了长足的进步。现在,已变成计算机视觉领域的一个焦点,很多著名的大学和IT公司都有研究组在从事这发面的研究。对于人脸识别的研究历史可分为三个阶段:第一阶段(1964-1990)这个阶段主要采取的技术是基于人脸几何结构的。研究的重点主要在剪影上。研究人员做了大量关于如何提取面部剪影曲线的结构特征的研究。这个阶段属于人脸识别的初级阶段,突出的研究成果不多,也没有获得的实际应用。第二阶段(1991-1997)这个阶段虽然时间相对较短,但是硕果累累,出现了若干具有代表性的算法和几个商业化的人脸识别系统,如Id
18、entix(原为Visionics)公司的FaceIt系统。这个时期最具盛名的人脸识别方法是MIT媒体实验室的Turk和Pentland提出的的“特征脸”方法。后来很多人脸识别技术都与特征脸有关,现在特征脸已与归一化的协相关量方法一起成为了人脸识别性能测试的基准算法。这个时期的主要成果有:1992年左右,Brunelli和Poggio做了一个基于结构特征的方法和基于模板匹配的方法性能对比的实验,并得出了模块匹配的方法优于基于特征的方法的结论。这个结论和特征脸的共同作用,基本上停止了纯粹基于结构特征人脸识别的研究,并且很大的促进了基于表观的线性子空间建模和基于统计模式识别技术的发展,使其逐渐成为
19、主流技术。Belhumeur等人的Fisherface方法也是此阶段一个重要的成果。该方法目前依然是主流人脸识别方法中的一种,产生了很多变种,比如子空间判别模型等。其先使用PCA即特征脸对人脸图像表现特征进行降维,并使用线性判别分析方法对降维后的主成分进行变换以获得“尽量大的类间散度和尽量小的类内散度”。弹性匹配技术1为另一个重要方法。它用一个属性图来描述人脸:属性的顶点代表面部关键特征点,它的属性为相应特征点处的多分辨率,多方向局部特征Gabor变换2,称为Jet;边的属性为不同特征点间的几何关系。对于输入的图像,其通过一种优化搜索策略来定位预先定位的若干面部关键特征点,同时提取它们的Jet
20、特征,得到输入人脸图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。弹性匹配方法的优点是既保留了面部的全局结构特征,也对人脸关键局部特征进行了建模。局部特征分析由Atick等提出。其在本质上是基于统计的低维对象描述方法,与PCA相比,局部特征分析在全局主成分分析的基础上提取的是局部特征。它既保留了全局拓扑信息,有提取了局部特征,使其具有了更好的描述和识别能力。局部特征分析技术已商业化为著名FaceIt系统。柔性模型,包括主动形状模型和主动外观模型。它是人脸建模方面的一个新的进步。其主要将人脸描述为2D形状和纹理两个分离的部分,分别用PCA建模,然后再通过PCA3,4,5将两者
21、合成来对人脸建模。柔性模型具有良好的人脸合成能力,可以使用基于合成的图像分析技术对人脸图像进行特征提取和建模。这个阶段所提出的算法在理想图像采集条件,人员配合,中小规模正面人脸数据库上达到了非常好的性能。,也诞生几个著名的人脸识别系统。第三阶段(1998年现在)这个时期关于人脸识别的研究非常热门。有大量的研究人员从事这方面的研究。主要针对的是主流的人脸识别技术在采集条件不理想和用户不配合下鲁棒性差的问题。光照和姿态问题成为了研究焦点。这个时期主要成果有:Georghiades等人基于光照锤模型的多姿态,多光照条件人脸识别方法。Blanz和Vetter等人基于3D变形模型的多姿态,多光照的人脸识
22、别方法。Shashua等人基于上图像的人脸图像识别与绘制技术6,7。总体而言,目前非理想成像条件下(尤其是光照和姿态),对象不配合,大规模人脸数据库上的人脸识别已逐渐成为研究的重点。而非线性建模方法,统计学习理论,基于Boosting的学习技术,基于3D模型的人脸建模与识别方法等逐渐成为备受重视的技术发展趋势。从整个人脸识别的研究历史来看,基于PCA的特征脸8,9识别方法占据了非常重要的地位,也对后来的人脸识别技术产生甚远的影响。在后来很多的人脸识别技术,我们或多或少都会发现它的影子。人脸图像维数都很高,PCA方法不但很好表征人脸而且通过去除相关性,减少冗余,解决了在人脸识别过程中图像为数过高
23、的问题。并且随着现代社会的发展,快速人脸识别的需求越来越大。所以研究基于PCA的人脸识别算法的实现还是有实际意义,本文也就在这样的背景下写作而成。第二节 人脸识别的发展趋势人脸识别至今虽然取得了丰硕的研究成果,但是还有很多问题需要解决。人脸识别的难度在于:人脸是非刚性物体,并且会随着年龄的增长而改变,特征难以完全描述;人脸常常有许多遮挡物,如:眼镜,帽子等;环境的光照和人脸的姿态等。人脸识别的未来主要的发展趋势如下:一、多数据融合与方法综合人脸识别技术经过这几十年的发展,已取得非常不错的成果。但是各种技术和方法都有自己不同的适应环境和各自的特点。如何使用数据融合理论,将不同的方法综合起来,相互
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 PCA 识别 算法 实现 毕业论文
链接地址:https://www.31ppt.com/p-3938820.html